我有一个复杂的查询,需要700毫秒才能在我的计算机上运行。我发现瓶颈是 ORDER BY at_firstname.value 子句,但是如何使用索引对此进行改进?
SELECT
`e`.*
, `at_default_billing`.`value` AS `default_billing`
, `at_billing_postcode`.`value` AS `billing_postcode`
, `at_billing_city`.`value` AS `billing_city`
, `at_billing_region`.`value` AS `billing_region`
, `at_billing_country_id`.`value` AS `billing_country_id`
, `at_company`.`value` AS `company`
, `at_firstname`.`value` AS `firstname`
, `at_lastname`.`value` AS `lastname`
, CONCAT(at_firstname.value
, " "
, at_lastname.value) AS `full_name`
, `at_phone`.`value` AS `phone`
, IFNULL(at_phone.value,"N/A") AS `telephone`
, `e`.`entity_id` AS `id`
FROM
`customer_entity` AS `e`
LEFT JOIN
`customer_entity_int` AS `at_default_billing`
ON (`at_default_billing`.`entity_id` = `e`.`entity_id`)
AND (`at_default_billing`.`attribute_id` = '13')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_postcode`
ON (`at_billing_postcode`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_postcode`.`attribute_id` = '30')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_city`
ON (`at_billing_city`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_city`.`attribute_id` = '26')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_region`
ON (`at_billing_region`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_region`.`attribute_id` = '28')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_country_id`
ON (`at_billing_country_id`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_country_id`.`attribute_id` = '27')
LEFT JOIN
`customer_address_entity_varchar` AS `at_company`
ON (`at_company`.`entity_id` = `at_default_billing`.`value`)
AND (`at_company`.`attribute_id` = '24')
LEFT JOIN
`customer_entity_varchar` AS `at_firstname`
ON (`at_firstname`.`entity_id` = `e`.`entity_id`)
AND (`at_firstname`.`attribute_id` = '5')
LEFT JOIN
`customer_entity_varchar` AS `at_lastname`
ON (`at_lastname`.`entity_id` = `e`.`entity_id`)
AND (`at_lastname`.`attribute_id` = '7')
LEFT JOIN
`customer_entity_varchar` AS `at_phone`
ON (`at_phone`.`entity_id` = `e`.`entity_id`)
AND (`at_phone`.`attribute_id` = '136')
ORDER BY
`at_firstname`.`value` ASC LIMIT 20
查询解释:
'1','SIMPLE','e',NULL,'ALL',NULL,NULL,NULL,NULL,'19951','100.00','Using temporary; Using filesort'
'1','SIMPLE','at_default_billing',NULL,'eq_ref','UNQ_CUSTOMER_ENTITY_INT_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_INT_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_INT_ENTITY_ID,IDX_CUSTOMER_ENTITY_INT_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ENTITY_INT_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.e.entity_id,const','1','100.00',NULL
'1','SIMPLE','at_billing_postcode',NULL,'eq_ref','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.at_default_billing.value,const','1','100.00','Using where'
'1','SIMPLE','at_billing_city',NULL,'eq_ref','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.at_default_billing.value,const','1','100.00','Using where'
'1','SIMPLE','at_billing_region',NULL,'eq_ref','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.at_default_billing.value,const','1','100.00','Using where'
'1','SIMPLE','at_billing_country_id',NULL,'eq_ref','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.at_default_billing.value,const','1','100.00','Using where'
'1','SIMPLE','at_company',NULL,'eq_ref','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ADDRESS_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.at_default_billing.value,const','1','100.00','Using where'
'1','SIMPLE','at_firstname',NULL,'eq_ref','UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.e.entity_id,const','1','100.00',NULL
'1','SIMPLE','at_lastname',NULL,'eq_ref','UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.e.entity_id,const','1','100.00',NULL
'1','SIMPLE','at_phone',NULL,'eq_ref','UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ATTRIBUTE_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID,IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE','UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID','6','lazurd.e.entity_id,const','1','100.00',NULL
表结构:
CREATE TABLE `customer_entity_varchar` (
`value_id` int(11) NOT NULL AUTO_INCREMENT COMMENT 'Value Id',
`entity_type_id` smallint(5) unsigned NOT NULL DEFAULT '0' COMMENT 'Entity Type Id',
`attribute_id` smallint(5) unsigned NOT NULL DEFAULT '0' COMMENT 'Attribute Id',
`entity_id` int(10) unsigned NOT NULL DEFAULT '0' COMMENT 'Entity Id',
`value` varchar(255) DEFAULT NULL COMMENT 'Value',
PRIMARY KEY (`value_id`),
UNIQUE KEY `UNQ_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID` (`entity_id`,`attribute_id`),
KEY `IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_TYPE_ID` (`entity_type_id`),
KEY `IDX_CUSTOMER_ENTITY_VARCHAR_ATTRIBUTE_ID` (`attribute_id`),
KEY `IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID` (`entity_id`),
KEY `IDX_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_ATTRIBUTE_ID_VALUE` (`entity_id`,`attribute_id`,`value`),
CONSTRAINT `FK_CSTR_ENTT_VCHR_ATTR_ID_EAV_ATTR_ATTR_ID` FOREIGN KEY (`attribute_id`) REFERENCES `eav_attribute` (`attribute_id`) ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT `FK_CSTR_ENTT_VCHR_ENTT_TYPE_ID_EAV_ENTT_TYPE_ENTT_TYPE_ID` FOREIGN KEY (`entity_type_id`) REFERENCES `eav_entity_type` (`entity_type_id`) ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT `FK_CUSTOMER_ENTITY_VARCHAR_ENTITY_ID_CUSTOMER_ENTITY_ENTITY_ID` FOREIGN KEY (`entity_id`) REFERENCES `customer_entity` (`entity_id`) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=131094 DEFAULT CHARSET=utf8 COMMENT='Customer Entity Varchar';
答案 0 :(得分:3)
到目前为止,您的查询是:
ORDER
行。LIMIT
行。我将首先执行严格需要的外部联接,然后进行排序和限制(以减少到20行),最后我将执行所有其余的外部联接。简而言之,我会这样做:
ORDER
行。LIMIT
行。这样最多可产生20行。此更改将大大减少“唯一键查找”的执行。修改后的查询将如下所示:
select
e.*
, `at_default_billing`.`value` AS `default_billing`
, `at_billing_postcode`.`value` AS `billing_postcode`
, `at_billing_city`.`value` AS `billing_city`
, `at_billing_region`.`value` AS `billing_region`
, `at_billing_country_id`.`value` AS `billing_country_id`
, `at_company`.`value` AS `company`
, `at_lastname`.`value` AS `lastname`
, CONCAT(firstname
, " "
, at_lastname.value) AS `full_name`
, `at_phone`.`value` AS `phone`
, IFNULL(at_phone.value,"N/A") AS `telephone`
from ( -- Step #1: joining customer_entity with customer_entity_varchar
SELECT
`e`.*
, `at_firstname`.`value` AS `firstname`
, `e`.`entity_id` AS `id`
FROM
`customer_entity` AS `e`
LEFT JOIN
`customer_entity_varchar` AS `at_firstname`
ON (`at_firstname`.`entity_id` = `e`.`entity_id`)
AND (`at_firstname`.`attribute_id` = '5')
ORDER BY -- Step #2: Sorting (the bare minimum)
`at_firstname`.`value` ASC
LIMIT 20 -- Step #3: Limiting (to 20 rows)
) e
LEFT JOIN -- Step #4: Performing all the rest of outer joins (only few rows now)
`customer_entity_int` AS `at_default_billing`
ON (`at_default_billing`.`entity_id` = `e`.`entity_id`)
AND (`at_default_billing`.`attribute_id` = '13')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_postcode`
ON (`at_billing_postcode`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_postcode`.`attribute_id` = '30')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_city`
ON (`at_billing_city`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_city`.`attribute_id` = '26')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_region`
ON (`at_billing_region`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_region`.`attribute_id` = '28')
LEFT JOIN
`customer_address_entity_varchar` AS `at_billing_country_id`
ON (`at_billing_country_id`.`entity_id` = `at_default_billing`.`value`)
AND (`at_billing_country_id`.`attribute_id` = '27')
LEFT JOIN
`customer_address_entity_varchar` AS `at_company`
ON (`at_company`.`entity_id` = `at_default_billing`.`value`)
AND (`at_company`.`attribute_id` = '24')
LEFT JOIN
`customer_entity_varchar` AS `at_lastname`
ON (`at_lastname`.`entity_id` = `e`.`entity_id`)
AND (`at_lastname`.`attribute_id` = '7')
LEFT JOIN
`customer_entity_varchar` AS `at_phone`
ON (`at_phone`.`entity_id` = `e`.`entity_id`)
AND (`at_phone`.`attribute_id` = '136')
答案 1 :(得分:3)
不幸的是,SELECT whole_mess_of_rows FROM many_tables ORDER BY one_col LIMIT small_number
是一个臭名昭著的性能反模式。为什么?因为它对很大的结果集进行排序,所以只丢弃其中的大部分。
诀窍是廉价地找出该LIMIT small_number
中的哪些行,然后仅从较大的查询中检索那些行。
您要哪几行?在我看来,此查询将检索其customer_entity.id
值。但是很难确定,因此您应该测试此子查询。
SELECT customer_entity.entity_id
FROM customer_entity
LEFT JOIN customer_entity_varchar AS at_firstname
ON (at_firstname.entity_id = e.entity_id)
AND (at_firstname.attribute_id = '5')
ORDER BY at_firstname.value ASC
LIMIT 20
这应该给出二十个相关的entity_id值。测试一下。查看其执行计划。如有必要,向customer_entity
添加适当的索引。该索引可能是(firstname_attribute_id, firstname_entity_id, firstname_value)
,但我猜是这样。
然后,您可以将其放在主查询的末尾,就在ORDER BY之前。
WHERE e.entity_id IN (
SELECT customer_entity.entity_id
FROM customer_entity
LEFT JOIN customer_entity_varchar AS at_firstname
ON (at_firstname.entity_id = e.entity_id)
AND (at_firstname.attribute_id = '5')
ORDER BY at_firstname.value ASC
LIMIT 20
)
事情应该会快一点。
答案 2 :(得分:1)
我同意前面的答案,但想强调更多反模式:过度规范化。
您的模式是对已经很糟糕的EAV模式的一种好奇(且效率低下)。
将customer_address_entity_varchar
分成5个表几乎没有好处,也有一些缺点。对于customer_entity_varchar
同样。
(通常)地址应以几列的形式存储在单个表中;没有JOINs
到其他表。
与名字和姓氏类似。
Phone
可能是另一个问题,因为一个人/公司/实体可能有多个电话号码(手机,家庭,工作,传真等)。但这是另一回事。