我有DataFrame
力 - 位移数据。置换数组已设置为DataFrame
索引,列是不同测试的各种力曲线。
如何计算完成的工作(“曲线下面积”)?
我看了numpy.trapz
这似乎做了我需要的东西,但我认为我可以避免像这样循环遍历每一列:
import numpy as np
import pandas as pd
forces = pd.read_csv(...)
work_done = {}
for col in forces.columns:
work_done[col] = np.trapz(forces.loc[col], forces.index))
我希望在曲线下创建一个新的DataFrame
区域,而不是dict
,并认为DataFrame.apply()
或某些东西可能是合适的,但不知道在哪里开始寻找。
简而言之:
DataFrame
工作吗?提前感谢您的帮助。
答案 0 :(得分:5)
您可以通过将整个import numpy as np
import pandas as pd
# some random input data
gen = np.random.RandomState(0)
x = gen.randn(100, 10)
names = [chr(97 + i) for i in range(10)]
forces = pd.DataFrame(x, columns=names)
# vectorized version
wrk = np.trapz(forces, x=forces.index, axis=0)
work_done = pd.DataFrame(wrk[None, :], columns=forces.columns)
# non-vectorized version for comparison
work_done2 = {}
for col in forces.columns:
work_done2.update({col:np.trapz(forces.loc[:, col], forces.index)})
传递给np.trapz
并指定from pprint import pprint
pprint(work_done.T)
# 0
# a -24.331560
# b -10.347663
# c 4.662212
# d -12.536040
# e -10.276861
# f 3.406740
# g -3.712674
# h -9.508454
# i -1.044931
# j 15.165782
pprint(work_done2)
# {'a': -24.331559643023006,
# 'b': -10.347663159421426,
# 'c': 4.6622123535050459,
# 'd': -12.536039649161403,
# 'e': -10.276861220217308,
# 'f': 3.4067399176289994,
# 'g': -3.7126739591045541,
# 'h': -9.5084536839888187,
# 'i': -1.0449311137294459,
# 'j': 15.165781517623724}
参数来对此进行矢量化,例如:
col
这些提供以下输出:
.loc[:, col]
您的原始示例还有其他一些问题。 .loc[col]
是列名而不是行索引,因此需要索引数据框的第二维(即DataFrame
而不是np.trapz
)。此外,最后一行还有一个额外的尾随括号。
你可以直接通过.apply
work_done = forces.apply(np.trapz, axis=0, args=(forces.index,))
向每列生成输出np.trapz
,例如:
.apply
然而,这并不是真正“正确”的矢量化 - 您仍在每列上分别调用np.trapz
。您可以通过直接比较In [1]: %timeit forces.apply(np.trapz, axis=0, args=(forces.index,))
1000 loops, best of 3: 582 µs per loop
In [2]: %timeit np.trapz(forces, x=forces.index, axis=0)
The slowest run took 6.04 times longer than the fastest. This could mean that an
intermediate result is being cached
10000 loops, best of 3: 53.4 µs per loop
版本与调用DataFrame
的速度来看到这一点:
<script>
window.onload = function () {
var styles = [
{
featureType: 'water',
elementType: 'all',
stylers: [
{ hue: '#7da6d3' },
{ saturation: 8 },
{ lightness: -13 },
{ visibility: 'on' }
]
},{
featureType: 'landscape.man_made',
elementType: 'all',
stylers: [
{ hue: '#ffffff' },
{ saturation: -100 },
{ lightness: 100 },
{ visibility: 'on' }
]
},{
featureType: 'road',
elementType: 'all',
stylers: [
{ hue: '#7e90ad' },
{ saturation: -78 },
{ lightness: -8 },
{ visibility: 'simplified' }
]
},{
featureType: 'poi.park',
elementType: 'all',
stylers: [
{ hue: '#83cca5' },
{ saturation: -3 },
{ lightness: -16 },
{ visibility: 'simplified' }
]
},{
featureType: 'poi.school',
elementType: 'all',
stylers: [
{ hue: '#dddddd' },
{ saturation: -100 },
{ lightness: 22 },
{ visibility: 'on' }
]
},{
featureType: 'poi.place_of_worship',
elementType: 'all',
stylers: [
{ hue: '#dddddd' },
{ saturation: -100 },
{ lightness: 11 },
{ visibility: 'simplified' }
]
},{
featureType: 'poi.business',
elementType: 'geometry',
stylers: [
{ hue: '#96A6C5' },
{ saturation: 16 },
{ lightness: -20 },
{ visibility: 'on' }
]
},{
featureType: 'transit',
elementType: 'geometry',
stylers: [
{ hue: '#7da6d3' },
{ saturation: 49 },
{ lightness: -12 },
{ visibility: 'on' }
]
}
];
var options = {
mapTypeControlOptions: {
mapTypeIds: ['Styled']
},
center: new google.maps.LatLng(39.9534988, -75.1748003),
zoom: 16,
disableDefaultUI: false,
mapTypeId: 'Styled'
};
var div = document.getElementById('googleMap');
var map = new google.maps.Map(div, options);
var building = {lat: 39.9534988, lng: -75.1748003};
var image = 'images/marker.jpg';
var marker = new google.maps.Marker({
position: building,
map: map,
icon: image
});
var styledMapType = new google.maps.StyledMapType(styles, { name: '1919 Market' });
map.mapTypes.set('Styled', styledMapType);
}
var request = {
location: building,
radius: '500',
query: 'restaurant'
};
var service = new google.maps.places.PlacesService(map);
service.radarSearch(request, callback);
</script>
这不是一个完全公平的比较,因为第二个版本排除了从输出numpy数组构造{{1}}所花费的额外时间,但是这仍然应该小于执行实际整合。
答案 1 :(得分:0)
以下是使用梯形规则获取数据框列的累积积分的方法。或者,以下创建一个pandas.Series方法,用于选择Trapezoidal,Simpson或Romberger的规则(source):
import pandas as pd
from scipy import integrate
import numpy as np
#%% Setup Functions
def integrate_method(self, how='trapz', unit='s'):
'''Numerically integrate the time series.
@param how: the method to use (trapz by default)
@return
Available methods:
* trapz - trapezoidal
* cumtrapz - cumulative trapezoidal
* simps - Simpson's rule
* romb - Romberger's rule
See http://docs.scipy.org/doc/scipy/reference/integrate.html for the method details.
or the source code
https://github.com/scipy/scipy/blob/master/scipy/integrate/quadrature.py
'''
available_rules = set(['trapz', 'cumtrapz', 'simps', 'romb'])
if how in available_rules:
rule = integrate.__getattribute__(how)
else:
print('Unsupported integration rule: %s' % (how))
print('Expecting one of these sample-based integration rules: %s' % (str(list(available_rules))))
raise AttributeError
if how is 'cumtrapz':
result = rule(self.values)
result = np.insert(result, 0, 0, axis=0)
else:
result = rule(self.values)
return result
pd.Series.integrate = integrate_method
#%% Setup (random) data
gen = np.random.RandomState(0)
x = gen.randn(100, 10)
names = [chr(97 + i) for i in range(10)]
df = pd.DataFrame(x, columns=names)
#%% Cummulative Integral
df_cummulative_integral = df.apply(lambda x: x.integrate('cumtrapz'))
df_integral = df.apply(lambda x: x.integrate('trapz'))
df_do_they_match = df_cummulative_integral.tail(1).round(3) == df_integral.round(3)
if df_do_they_match.all().all():
print("Trapz produces the last row of cumtrapz")