递归算法将所有组合分成两组

时间:2015-12-25 12:44:32

标签: c++ algorithm recursion combinations permutation

我需要一种算法,在给定偶数个元素的情况下,对分为两组的元素的所有组合进行评估。组内的顺序无关紧要,因此组内的排列不应重复。 N = 4个元素的例子是评估

e(12,34), e(13,24), e(14,32), e(32,14), e(34,12), e(24,13)

我以为我拥有它,使用递归算法可以达到N = 6,但事实证明它在N = 8时失败了。这是算法(这个版本只打印出两个组;在我的实际实现中它将执行计算):

// Class for testing algoritm
class sym {

    private:
    int N, Nhalf, combs;
    VI order;
    void evaluate();
    void flip(int, int);
    void combinations(int, int);

    public:
    void combinations();

    sym(int N_) : N(N_) {
        if(N%2) {
           cout "Number of particles must divide the 2 groups; requested N = " << N << endl;
           throw exception();
        }
        Nhalf=N/2;
        order.resize(N);
        for(int i=0;i<N;i++) order[i]=i+1;  
    }

    ~sym() {
        cout << endl << combs << " combinations" << endl << endl;
    }
};

// Swaps element n in group 1 and i in group 2
void sym::flip(int n, int i) {
    int tmp=order[n];
    order[n]=order[i+Nhalf];
    order[i+Nhalf]=tmp;
}

// Evaluation (just prints the two groups)
void sym::evaluate() {
    for(int i=0;i<Nhalf;i++) cout << order[i] << " ";
    cout << endl;
    for(int i=Nhalf;i<N;i++) cout << order[i] << " ";
    cout << endl << "--------------------" << endl;
    combs++;
}

// Starts the algorithm
void sym::combinations() {
    cout << "--------------------" << endl;
    combinations(0, 0);
} 

// Recursive algorithm for the combinations
void sym::combinations(int n, int k) {
    if(n==Nhalf-1) {
        evaluate();
        for(int i=k;i<Nhalf;i++) {
            flip(n, i);
            evaluate();
            flip(n, i);
        }
        return;
    }
    combinations(n+1, k);
    for(int i=k;i<Nhalf;i++) {
        flip(n, i);
        combinations(n+1, k+i+1);
        flip(n, i);
    }
}

如果我以N = 2运行,例如,我得到了正确的

--------------------
1 2 
3 4 
--------------------
1 3 
2 4 
--------------------
1 4 
3 2 
--------------------
3 2 
1 4 
--------------------
3 4 
1 2 
--------------------
4 2 
3 1 
--------------------

6 combinations

但似乎N&gt; 6不起作用。是否有一个简单的改变可以解决这个问题,还是我必须重新思考整个事情?

编辑:如果每次更改都涉及交换两个元素(比如上面的失败尝试),那就更好了;因为这会使代码最终变得更快。

编辑:刚刚意识到N = 6也失败了,测试很草率。

3 个答案:

答案 0 :(得分:2)

std::next_permutation可能有所帮助(没有递归):

#include <iostream>
#include <algorithm>

template<typename T>
void do_job(const std::vector<T>& v, const std::vector<std::size_t>& groups)
{
    std::cout << " e(";
    for (std::size_t i = 0; i != v.size(); ++i) {
        if (groups[i] == 0) {
            std::cout << " " << v[i];
        }
    }
    std::cout << ",";
    for (std::size_t i = 0; i != v.size(); ++i) {
        if (groups[i] == 1) {
            std::cout << " " << v[i];
        }
    }
    std::cout << ")\n";
}

template<typename T>
void print_combinations(const std::vector<T>& v)
{
    std::vector<std::size_t> groups(v.size() / 2, 0);
    groups.resize(v.size(), 1); // groups is now {0, .., 0, 1, .., 1}

    do {
        do_job(v, groups);
    } while (std::next_permutation(groups.begin(), groups.end()));
}

int main()
{
    std::vector<int> numbers = {1, 2, 3, 4};
    print_combinations(numbers);
}

Anders Goransson, Efficient Android Threading: Asynchronous Processing Techniques for Android

答案 1 :(得分:1)

>>> import crypt
>>> crypt.crypt('password', '$6$' + 'salt1234')
'$6$salt1234$Zr07alHmuONZlfKILiGKKULQZaBG6Qmf5smHCNH35KnciTapZ7dItwaCv5SKZ1xH9ydG59SCgkdtsTqVWGhk81'

// generate all combination that use n of the numbers 1..k void sym::combinations(int n, int k) { if (n>k) return; // oops if (n==0) { evaluate(); return; } combinations(n, k-1); order[n-1] = k; combinations(n-1,k-1); } 开始,无需预先初始化combinations(N/2,N)。但是在编码时,它只会填充第一组order的前半部分,你需要发布进程以获得第二组。

使用适量的额外逻辑,您可以在order期间填写下半部分。我认为这样做:

combinations

我认为基于翻盖的设计更加丑陋。但经过深思熟虑,实际上并不困难。因此,回到您从void sym::combinations(int n, int k) { if (k==0) { evaluate(); return; } if (n>0) { order[n-1] = k; combinations(n-1,k-1); } if (n<k) { order[Nhalf+k-n-1] = k; combinations(n, k-1); } } 开始的设计,您可以使用:

combinations(0,0)

答案 2 :(得分:1)

要递归列出n choose n/2组合,您可以使用将每个值添加到任一组的算法:

f(n,k,A,B):
  if k == 0:
    output A,B with {n,n-1..1}
  else if n == k:
    output A with {n,n-1..1},B
  else if k > 0:
    f(n-1,k-1,A with n,B)
    f(n-1,k,A,B with n)

以下示例。对于累积堆栈的一半,可以跳过两个第一个递归调用中的一个,并在评估期间反转该对的顺序。

f(4,2,[],[])
  f(3,1,[4],[])
    f(2,0,[4,3],[]) => {[4,3],[2,1]}
    f(2,1,[4],[3])
      f(1,0,[4,2],[3]) => {[4,2],[3,1]}
      f(1,1,[4],[3,2]) => {[4,1],[3,2]}
  f(3,2,[],[4])
    f(2,1,[3],[4])
      f(1,0,[3,2],[4]) => {[3,2],[4,1]}
      f(1,1,[3],[4,2]) => {[3,1],[4,2]}
    f(2,2,[],[4,3]) => {[2,1],[4,3]}