生成所有固定长度组合组

时间:2013-01-28 10:26:20

标签: python algorithm

我正在寻找一种算法和/或Python代码,以生成将一组n元素划分为零个或多个r元素组和余数的所有可能方法。例如,给定一个集合:

[1,2,3,4,5]

n = 5r = 2,我想

((1,2,3,4,5),)
((1,2),(3,4,5))
((1,3),(2,4,5))
...
((1,2),(3,4),(5,))
((1,2),(3,5),(4,))
...

换句话说,从集合中提取0个两组项目的结果,加上从集合中提取1组两个项目的结果,加上从集合中提取2组2的结果,...如果n更大,则会继续。

生成这些结果的顺序并不重要,也不是每个组中元素的顺序,也不是结果中组的顺序。 (例如((1,3),(2,4,5))相当于((3,1),(4,5,2))((2,5,4),(1,3))等等。)我正在寻找的是每个不同的结果至少生成一次,最好是恰好一次,尽可能高效。


强力方法是从r元素中生成n的所有可能组合,然后创建任意数量的这些组合的所有可能组(powerset),迭代在他们身上,只处理组中的组合没有共同元素的那些。即使是少量元素,它也需要太长时间(它需要迭代超过2 ^(n!/ r!(nr)!)组,因此复杂性是双指数的。)

基于this question中给出的代码,基本上是r = 2n的特殊情况,我提出了以下内容:

def distinct_combination_groups(iterable, r):
    tpl = tuple(iterable)
    yield (tpl,)
    if len(tpl) > r:
        for c in combinations(tpl, r):
            for g in distinct_combination_groups(set(tpl) - set(c), r):
                yield ((c,) + g)

似乎确实产生了所有可能的结果,但它包含一些重复项,当n相当大时,它们是非常重要的。所以我希望有一种避免重复的算法。

1 个答案:

答案 0 :(得分:6)

这个怎么样?

from itertools import combinations

def partitions(s, r):
    """
    Generate partitions of the iterable `s` into subsets of size `r`.

    >>> list(partitions(set(range(4)), 2))
    [((0, 1), (2, 3)), ((0, 2), (1, 3)), ((0, 3), (1, 2))]
    """
    s = set(s)
    assert(len(s) % r == 0)
    if len(s) == 0:
        yield ()
        return
    first = next(iter(s))
    rest = s.difference((first,))
    for c in combinations(rest, r - 1):
        first_subset = (first,) + c
        for p in partitions(rest.difference(c), r):
            yield (first_subset,) + p

def partitions_with_remainder(s, r):
    """
    Generate partitions of the iterable `s` into subsets of size
    `r` plus a remainder.

    >>> list(partitions_with_remainder(range(4), 2))
    [((0, 1, 2, 3),), ((0, 1), (2, 3)), ((0, 2), (1, 3)), ((0, 3), (1, 2))]
    >>> list(partitions_with_remainder(range(3), 2))
    [((0, 1, 2),), ((1, 2), (0,)), ((0, 2), (1,)), ((0, 1), (2,))]
    """
    s = set(s)
    for n in xrange(len(s), -1, -r): # n is size of remainder.
        if n == 0:
            for p in partitions(s, r):
                yield p
        elif n != r:
            for remainder in combinations(s, n):
                for p in partitions(s.difference(remainder), r):
                    yield p + (remainder,)

OP的例子:

>>> pprint(list(partitions_with_remainder(range(1, 6), 2)))
[((1, 2, 3, 4, 5),),
 ((4, 5), (1, 2, 3)),
 ((3, 5), (1, 2, 4)),
 ((3, 4), (1, 2, 5)),
 ((2, 5), (1, 3, 4)),
 ((2, 4), (1, 3, 5)),
 ((2, 3), (1, 4, 5)),
 ((1, 5), (2, 3, 4)),
 ((1, 4), (2, 3, 5)),
 ((1, 3), (2, 4, 5)),
 ((1, 2), (3, 4, 5)),
 ((2, 3), (4, 5), (1,)),
 ((2, 4), (3, 5), (1,)),
 ((2, 5), (3, 4), (1,)),
 ((1, 3), (4, 5), (2,)),
 ((1, 4), (3, 5), (2,)),
 ((1, 5), (3, 4), (2,)),
 ((1, 2), (4, 5), (3,)),
 ((1, 4), (2, 5), (3,)),
 ((1, 5), (2, 4), (3,)),
 ((1, 2), (3, 5), (4,)),
 ((1, 3), (2, 5), (4,)),
 ((1, 5), (2, 3), (4,)),
 ((1, 2), (3, 4), (5,)),
 ((1, 3), (2, 4), (5,)),
 ((1, 4), (2, 3), (5,))]