我在python中有以下代码
###############################################################################
"""
@INPUT:
R : a matrix to be factorized, dimension N x M
P : an initial matrix of dimension N x K
Q : an initial matrix of dimension M x K
K : the number of latent features
steps : the maximum number of steps to perform the optimisation
alpha : the learning rate
beta : the regularization parameter
@OUTPUT:
the final matrices P and Q
"""
def matrix_factorization(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02):
Q = Q.T
for step in xrange(steps):
for i in xrange(len(R)):
for j in xrange(len(R[i])):
if R[i][j] > 0:
eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
for k in xrange(K):
P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
Q[k][j] = Q[k][j] + alpha * (2 * eij * P[i][k] - beta * Q[k][j])
eR = numpy.dot(P,Q)
e = 0
for i in xrange(len(R)):
for j in xrange(len(R[i])):
if R[i][j] > 0:
e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
for k in xrange(K):
e = e + (beta/2) * ( pow(P[i][k],2) + pow(Q[k][j],2) )
if e < 0.001:
break
return P, Q.T
###############################################################################
代码适用于小矩阵,但我有两个大矩阵P(15715 ,203)和Q(203,16384),当我尝试在P和Q上执行此代码时,它会给我以下错误
K=203
matrix_factorization(R, P, Q, K)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-00b8211f2507> in <module>()
----> 1 matrix_factorization(R, P, Q, K)
/Users/ajinkyachandrakantbobade/Desktop/random_choicefile/trial.py in matrix_factorization(R, P, Q, K, steps, alpha, beta)
52 for j in xrange(len(R[i])):
53 if R[i][j] > 0:
---> 54 eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
55 for k in xrange(K):
56 P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
/Users/ajinkyachandrakantbobade/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/core/frame.pyc in __getitem__(self, key)
1967 return self._getitem_multilevel(key)
1968 else:
-> 1969 return self._getitem_column(key)
1970
1971 def _getitem_column(self, key):
/Users/ajinkyachandrakantbobade/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/core/frame.pyc in _getitem_column(self, key)
1974 # get column
1975 if self.columns.is_unique:
-> 1976 return self._get_item_cache(key)
1977
1978 # duplicate columns & possible reduce dimensionality
/Users/ajinkyachandrakantbobade/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/pandas/core/generic.pyc in _get_item_cache(self, item)
1087 """ return the cached item, item represents a label indexer """
1088 cache = self._item_cache
-> 1089 res = cache.get(item)
1090 if res is None:
1091 values = self._data.get(item)
TypeError: unhashable type
有人可以帮忙解决这个错误吗?
答案 0 :(得分:0)
您尝试乘法的矩阵的大小太大,而且您没有足够的内存来完成计算。一些可能有所帮助的事情:
答案 1 :(得分:0)
您可以使用scipy包(例如scipy.sparse.coo_matrix(arg1 [,shape,dtype,copy])) 将矩阵转换成稀疏矩阵这将允许在更大的数据集上使用MF,而不会遇到计算问题。
对于该方法的实现,我使用了Jason Feriante解释的非负矩阵分解 https://github.com/jferiante/Collaborative-Filtering-Machine-Learning/blob/master/python/nmf-learn.py