我需要使用NLTK模块进行一些文字处理,我收到此错误: AttributeError:'tuple'对象没有属性'isdigit'
有人知道如何处理这个错误吗?
import nltk
with open ("SHORT-LIST.txt", "r",encoding='utf8') as myfile:
text = (myfile.read().replace('\n', ''))
#text = "program managment is complicated issue for human workers"
# Used when tokenizing words
sentence_re = r'''(?x) # set flag to allow verbose regexps
([A-Z])(\.[A-Z])+\.? # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis
| [][.,;"'?():-_`] # these are separate tokens
'''
lemmatizer = nltk.WordNetLemmatizer()
stemmer = nltk.stem.porter.PorterStemmer()
grammar = r"""
NBAR:
{<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with Nouns
NP:
{<NBAR>}
{<NBAR><IN><NBAR>} # Above, connected with in/of/etc...
"""
chunker = nltk.RegexpParser(grammar)
tok = nltk.regexp_tokenize(text, sentence_re)
postoks = nltk.tag.pos_tag(tok)
#print (postoks)
tree = chunker.parse(postoks)
from nltk.corpus import stopwords
stopwords = stopwords.words('english')
def leaves(tree):
"""Finds NP (nounphrase) leaf nodes of a chunk tree."""
for subtree in tree.subtrees(filter = lambda t: t.label()=='NP'):
yield subtree.leaves()
def normalise(word):
"""Normalises words to lowercase and stems and lemmatizes it."""
word = word.lower()
word = stemmer.stem_word(word)
word = lemmatizer.lemmatize(word)
return word
def acceptable_word(word):
"""Checks conditions for acceptable word: length, stopword."""
accepted = bool(2 <= len(word) <= 40
and word.lower() not in stopwords)
return accepted
def get_terms(tree):
for leaf in leaves(tree):
term = [ normalise(w) for w,t in leaf if acceptable_word(w) ]
yield term
terms = get_terms(tree)
with open("results.txt", "w+") as logfile:
for term in terms:
for word in term:
result = word
logfile.write("%s\n" % str(word))
# print (word),
# (print)
logfile.close()
ErrorException in cellmap.cls.php line 676:
Undefined offset: 688
答案 0 :(得分:5)
另一种方法和简单方法是更改此部分:
tok = nltk.regexp_tokenize(text, sentence_re)
postoks = nltk.tag.pos_tag(tok)
用nltk标准词标记器代替它:
toks = nltk.word_tokenize(text)
postoks = nltk.tag.pos_tag(toks)
理论上,性能和结果应该没有太大差异。
答案 1 :(得分:3)
nltk 3.1版本中的默认标记符为 Perceptron 。这是现在的最新版本。我的所有nltk.regexp_tokenize都停止正常运行,我所有的nltk.pos_tag都开始出现上述错误。
我目前的解决方案是使用以前的版本nltk 3.0.1来使它们正常运行。我不确定这是否是nltk当前版本中的错误。
ubuntu中nltk 3.0.4版本的安装说明。从您的主目录或任何其他目录执行以下步骤。
$ wget https://github.com/nltk/nltk/archive/3.0.4.tar.gz
$ tar -xvzf 3.0.4.tar.gz
$ cd nltk-3.0.4
$ sudo python3.4 setup.py install
答案 2 :(得分:3)
对于nltk的更高版本,正则表达式的更改解决了这个问题。我在https://gist.github.com/alexbowe/879414#gistcomment-1704727
找到了解决方案-
使用括号对给定表达式进行分组,并将所有括号更改为非捕获。
sentence_re = r'(?:(?:[AZ])(?:。[AZ])+。?)|(?:\ w +(?: - \ w +)*)|(?:\ $ ?(?:\ d +)?\ d +%)|(:... |)(?:?[] [。 '?(:-_`),“\)]'
-