I have to find multiplicity of smallest prime factor in all numbers till 10^7.I am using Sieve of Eratosthenes to find all the prime numbers. And there in a seperate array phi i am storing smallest prime factors of composite numbers.Here is my code for that
for(ull i=2;i<=m;i++)
{
if (check[i])
{
uncheck[i]=true;
for (ull k=i*i; k<=n; k+=i)
{
if(check[k]==true)
phi[k]=g;
check[k]=false;
}
}
}
Now i am running a loop till n and using a loop inside it to calculate it. Here is code for that
for(ull i=4;i<=n;i++)
{
if(check[i]==false)
{
ull count=0;
ull l=i;
ull r=phi[i];
while(l%r==0)
{
l=l/r;
count++;
}
cout<<count<<'\n';
}
}
Is there any faster way to compute this?
答案 0 :(得分:5)
Absolutely, you can do this without a loop.
c is probably at most 64 bits. It cannot contain any factor other than 1 more than 63 times. So instead of a loop, you write 63 nested if-statements.
For the case j == 2 your compiler may have some intrinsic functions that count trailing zero bits. If that is the case, then you handle that case separately and you need only 40 if's, because 3^41 > 2^64.
答案 1 :(得分:1)
If you want to evaluate n such that jn = c, then recast the problem to
n = log(c) / log(j).
If n is an integer then your problem is solved.
Of course you need to consider floating point precision here; n
might not be an exact integer, but close to one.
答案 2 :(得分:0)
One alternative option, though not necessarily the most efficient, is to write a simple recursive function, such as this, assuming you are dealing with ints:
int recurseSubtract(int c, int j, int count){
if ((c==j)) {
return count + 1;
} else {
c = c-j;
subtract(c, j, count++);
}
}
int count = recurseSubtract(c,j,0);
However, see here for the pros and cons of loops vs. recursion.
答案 3 :(得分:0)
由于您要求“最小素数因子的多重性”,您可以轻松地使用相同的筛选方法来获得多样性,因为您习惯于获得最小因子。
for(ull i=2;i<=m;i++)
{
if (check[i])
{
uncheck[i]=true; // WHY??
ull k=i*i;
for (ull q=i; q<maxq; k=(q*=i))
for ( ; k<=n; k+=q)
{
if(check[k]==true)
phi[k]=g; // I copied 'g' from you, but didn't you mean 'i'?
if ( phi[k]==g )
count[k]++;
check[k]=false;
}
}
}
如果您想要做得更好一点,则需要phi[k]==g
的步骤和check[k]
访问中的一些冗余,因为q值是按正序处理的。反向使用q会更快。由于q只能在正向序列中轻松计算,并且每个i
的q值相当少,因此向后处理q的最简单方法是将q上的循环转换为递归函数(在进入和处理的过程中计算q)在递归调用之后。)
答案 4 :(得分:0)
我发现了一个简单的规则,但无法用语言来描述。这是另一个计算素数的代码
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
double f_power(double val, int exp);
int main(int argc,char* argv[]) {
int p[2];
int ctr = 0;
int ctr2 = 0;
int it_m = 0;
int it_1 = 0;
int it_2 = 0;
int it_c = 0;
int index = 3;
srand(time(NULL));
double t = clock();
double s = clock();
int prime = 2;
FILE *file;
file = fopen("ly_prime.txt", "w");
//f_power(2.0, 57885161)
for (it_m = 2; it_m <= 2000; it_m++) {
for (it_1 = it_m, ctr2 = 0, it_c = it_m; it_1 >= 2; it_1--) {
for (it_2 = it_1; it_2 >= 2; it_2--) {
if (it_1 * it_2 - it_c == 0) {
p[ctr % 2] = it_c;
if (ctr >= 1 && p[ctr % 2] - p[(ctr - 1) % 2] == 2) {
//prime[0] = (p[ctr % 2] - 1);
prime = (p[ctr % 2] - 1);
fprintf(stdout, "|%d _ i: %d _ %d\n", isPrime(prime),index, prime);
index++;
}
ctr++;
}
}
}
}
t = clock() - t;
fprintf(file, "|%d_ %d_ %d ", prime, index - 2, ctr);
}
double f_power(double val, int exp) {
int i = 0;
double help = val;
for(i = 1; i < exp; i++) {
val *= help;
}
return val;
}
int isPrime(int number)
{
int i = 2;
for(i=2; i < number; i++)
{
int leftOver=(number % i);
if (leftOver==0)
{
return 1;
break;
}
}
return 0;
}
也许可以帮助您理解,最好的问候