如何在具有主要效果的主体ANOVA和R中的所有相互作用之间执行三向(二元因子)

时间:2015-11-09 08:47:58

标签: r anova

该研究按来源(专家与有吸引力)和参数(强与弱)随机分组参与者,分为监测类型(高与低)。我想测试主效应的重要性,双向交互以及以下数据帧的三向交互 - 具体来说,

主要影响=自我监控(高与低),论证(强与弱),来源(有吸引力与专家)

双向互动=自我监控参数,自我监控来源,参数*来源

三向互动=自我监控参数来源

这是代码:

data<-data.frame(Monitor=c(rep("High.Self.Monitors", 24),rep("Low.Self.Monitors", 24)),
                 Argument=c(rep("Strong", 24), rep("Weak", 24), rep("Strong", 24), rep("Weak", 24)),
                 Source=c(rep("Expert",12),rep("Attractive",12),rep("Expert",12),rep("Attractive",12),
                          rep("Expert",12),rep("Attractive",12),rep("Expert",12),rep("Attractive",12)),
                 Response=c(4,3,4,5,2,5,4,6,3,4,5,4,4,4,2,3,5,3,2,3,4,3,2,4,3,5,3,2,6,4,4,3,5,3,2,3,5,5,7,5,6,4,3,5,6,7,7,6,
                            3,5,5,4,3,2,1,5,3,4,3,4,5,4,3,2,4,6,2,4,4,3,4,3,5,6,4,7,6,7,5,6,4,6,7,5,6,4,4,2,4,5,4,3,4,2,3,4))
data$Monitor<-as.factor(data$Monitor)
data$Argument<-as.factor(data$Argument)
data$Source<-as.factor(data$Source)

我想获得主要效果,以及所有双向互动和三向互动。但是,如果我输入anova(lm(Response ~ Monitor*Argument*Source, data=data)),我会获得:

Analysis of Variance Table

Response: Response
               Df  Sum Sq Mean Sq F value    Pr(>F)    
Monitor         1  24.000 24.0000 13.5322 0.0003947 ***
Source          1   0.667  0.6667  0.3759 0.5413218    
Monitor:Source  1   0.667  0.6667  0.3759 0.5413218    
Residuals      92 163.167  1.7736                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

如果我输入summary(aov(Response ~ Monitor*Argument*Source, data=data))

Call:
lm.default(formula = Response ~ Monitor * Argument * Source, 
    data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.7917 -0.7917  0.2083  1.2083  2.5417 

Coefficients: (4 not defined because of singularities)
                                                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)                                          3.4583     0.2718  12.722  < 2e-16 ***
MonitorLow.Self.Monitors                             1.1667     0.3844   3.035  0.00313 ** 
ArgumentWeak                                             NA         NA      NA       NA    
SourceExpert                                         0.3333     0.3844   0.867  0.38817    
MonitorLow.Self.Monitors:ArgumentWeak                    NA         NA      NA       NA    
MonitorLow.Self.Monitors:SourceExpert               -0.3333     0.5437  -0.613  0.54132    
ArgumentWeak:SourceExpert                                NA         NA      NA       NA    
MonitorLow.Self.Monitors:ArgumentWeak:SourceExpert       NA         NA      NA       NA    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.332 on 92 degrees of freedom
Multiple R-squared:  0.1344,    Adjusted R-squared:  0.1062 
F-statistic: 4.761 on 3 and 92 DF,  p-value: 0.00394

有什么想法或想法吗?

修改Picture of the data

1 个答案:

答案 0 :(得分:0)

如您所说,您的数据并非随机化。为了估计三方互动,你必须让一组科目有&#34;低&#34;,&#34;强&#34;和#34;专家&#34;三个因素的水平组合。你没有这样的小组。

看看:

table(data[,1:3])

例如。