这是问题和代码(我搜索的解决方案和大多数相似,发布一个易于阅读),我的问题是针对以下两行,
pQuestion()
为什么我们需要单独考虑A [i],为什么不写为,
imax = max(A[i], imax * A[i]);
imin = min(A[i], imin * A[i]);
在数组(包含至少一个数字)中找到具有最大乘积的连续子阵列。
例如,给定数组[2,3,-2,4], 连续的子阵列[2,3]具有最大的乘积= 6。
imax = max(imin * A[i], imax * A[i]);
imin = min(imin * A[i], imax * A[i]);
提前谢谢,
林
答案 0 :(得分:1)
imax = max(A[i], imax * A[i]);
当您单独考虑A[i]
时,您基本上会考虑从A[i]
开始的序列。
最初初始化imin
和imax
A[0]
时,您正在做类似的事情。
imin
案例也是如此。
小例子:
Array = {-4, 3, 8 , 5}
初始化:imin = -4, imax = -4
迭代1:i=1 , A[i]=3
imax = max(A[i], imax * A[i]);
- > imax = max(3, -4 * 3);
- > imax = 3
A[i]
为负数且imax
为正数时,A[i]
可能最大。
答案 1 :(得分:0)
public class MaximumContiguousSubArrayProduct {
public static int getMaximumContiguousSubArrayProduct(final int... array) {
if (array.length == 0) {
return -1;
}
int negativeMax = 0, positiveMax = 0, max;
if (array[0] < 0) {
negativeMax = array[0];
max = negativeMax;
} else {
positiveMax = array[0];
max = positiveMax;
}
for (int i = 1; i < array.length; i++) {
if (array[i] == 0) {
negativeMax = 0;
positiveMax = 0;
if (max < 0) {
max = 0;
}
} else if (array[i] > 0) {
if (positiveMax == 0) {
positiveMax = array[i];
} else {
positiveMax *= array[i];
}
if (negativeMax != 0) {
negativeMax *= array[i];
}
if (positiveMax > max) {
max = positiveMax;
}
} else {
if (array[i] > max) {
max = array[i];
}
if (negativeMax == 0) {
if (positiveMax != 0) {
negativeMax *= positiveMax;
} else {
negativeMax = array[i];
}
positiveMax = 0;
} else {
if (positiveMax != 0) {
int temp = positiveMax;
positiveMax = negativeMax * array[i];
negativeMax = temp * array[i];
} else {
positiveMax = negativeMax * array[i];
negativeMax = array[i];
}
if (positiveMax > max) {
max = positiveMax;
}
}
}
}
return max;
}
}
相应测试:
import org.junit.Test;
import static org.hamcrest.CoreMatchers.equalTo;
import static org.hamcrest.MatcherAssert.assertThat;
public class MaximumContiguousSubArrayProductTest {
@Test
public void testMaximumProductSubArray() {
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(2, 3, -2, 4), equalTo(6));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(2, 3, -2, 4, 9), equalTo(36));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(-2, 0, -1), equalTo(0));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(), equalTo(-1));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(-1), equalTo(-1));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(1), equalTo(1));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(-9, -3, -4, -1), equalTo(9 * 3 * 4));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(-1, 2), equalTo(2));
assertThat(MaximumContiguousSubArrayProduct.getMaximumContiguousSubArrayProduct(-100, -1, 99), equalTo(9900));
}
}