我在matlab中有一些代码,我想重写成python。它是一个简单的程序,它计算一些分布并以双对数刻度绘制它。
我遇到的问题是计算cdf。这是matlab代码:
for D = 1:10
delta = D / 10;
for k = 1:n
N_delta = poissrnd(delta^-alpha,1);
Y_k_delta = ( (1 - randn(N_delta)) / (delta.^alpha) ).^(-1/alpha);
Y_k_delta = Y_k_delta(Y_k_delta > delta);
X(k) = sum(Y_k_delta);
%disp(X(k))
end
[f,x] = ecdf(X);
plot(log(x), log(1-f))
hold on
end
在matlab中,我可以简单地使用:
[f,x] = ecdf(X);
在点x获得cdf(f)。 Here是它的文档。
在python中它更复杂:
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt
from statsmodels.distributions.empirical_distribution import ECDF
alpha = 1.5
n = 1000
X = []
for delta in range(1,5):
delta = delta/10.0
for k in range(1,n + 1):
N_delta = np.random.poisson(delta**(-alpha), 1)
Y_k_delta = ( (1 - np.random.random(N_delta)) / (delta**alpha) )**(-1/alpha)
Y_k_delta = [i for i in Y_k_delta if i > delta]
X.append(np.sum(Y_k_delta))
ecdf = ECDF(X)
x = np.linspace(min(X), max(X))
f = ecdf(x)
plt.plot(np.log(f), np.log(1-f))
plt.show()
这使得我的情节看起来很奇怪,绝对不像matlab那样平滑
我认为问题是我不理解ECDF
函数,或者它的工作方式与matlab不同
我为我的python代码实现了this解决方案(最多一点),但看起来它无法正常工作。
答案 0 :(得分:5)
获得样本后,您可以使用np.unique
*和np.cumsum
的组合轻松计算ECDF:
import numpy as np
def ecdf(sample):
# convert sample to a numpy array, if it isn't already
sample = np.atleast_1d(sample)
# find the unique values and their corresponding counts
quantiles, counts = np.unique(sample, return_counts=True)
# take the cumulative sum of the counts and divide by the sample size to
# get the cumulative probabilities between 0 and 1
cumprob = np.cumsum(counts).astype(np.double) / sample.size
return quantiles, cumprob
例如:
from scipy import stats
from matplotlib import pyplot as plt
# a normal distribution with a mean of 0 and standard deviation of 1
n = stats.norm(loc=0, scale=1)
# draw some random samples from it
sample = n.rvs(100)
# compute the ECDF of the samples
qe, pe = ecdf(sample)
# evaluate the theoretical CDF over the same range
q = np.linspace(qe[0], qe[-1], 1000)
p = n.cdf(q)
# plot
fig, ax = plt.subplots(1, 1)
ax.hold(True)
ax.plot(q, p, '-k', lw=2, label='Theoretical CDF')
ax.plot(qe, pe, '-r', lw=2, label='Empirical CDF')
ax.set_xlabel('Quantile')
ax.set_ylabel('Cumulative probability')
ax.legend(fancybox=True, loc='right')
plt.show()
*如果您使用的是早于1.9.0的numpy版本,则np.unique
将不接受return_counts
关键字参数,您将获得TypeError
:< / p>
TypeError: unique() got an unexpected keyword argument 'return_counts'
在这种情况下,解决方法是获取一组“反向”索引并使用np.bincount
来计算出现次数:
quantiles, idx = np.unique(sample, return_inverse=True)
counts = np.bincount(idx)