我使用nnet
的{{1}}函数拟合了一个mutinomial模型(在这种情况下,数据给出了男性和女性的饮食偏好以及不同湖泊中不同大小的鳄鱼类型):
multinom
我可以使用的因素的总体意义
data=read.csv("https://www.dropbox.com/s/y9elunsbv74p2h6/alligator.csv?dl=1")
head(data)
id size sex lake food
1 1 <2.3 male hancock fish
2 2 <2.3 male hancock fish
3 3 <2.3 male hancock fish
4 4 <2.3 male hancock fish
5 5 <2.3 male hancock fish
6 6 <2.3 male hancock fish
library(nnet)
fit=multinom(food~lake+sex+size, data = data, Hess = TRUE)
我得到的影响情节,例如因子“湖”使用
library(car)
Anova(fit, type="III") # type III tests
Analysis of Deviance Table (Type III tests)
Response: food
LR Chisq Df Pr(>Chisq)
lake 50.318 12 1.228e-06 ***
sex 2.215 4 0.696321
size 17.600 4 0.001477 **
除了整体的Anova测试之外,我还想进行成对的Tukey posthoc测试,以测试多食物分布中吃掉猎物的总体差异,例如:穿过不同的湖泊。
我首先考虑在包library(effects)
plot(effect(fit,term="lake"),ylab="Food",type="probability",style="stacked",colors=rainbow(5))
中使用函数glht
,但这似乎不起作用,例如因子multcomp
:
lake
替代方法是使用包library(multcomp)
summary(glht(fit, mcp(lake = "Tukey")))
Error in summary(glht(fit, mcp(lake = "Tukey"))) :
error in evaluating the argument 'object' in selecting a method for function 'summary': Error in glht.matrix(model = list(n = c(6, 0, 5), nunits = 12L, nconn = c(0, :
‘ncol(linfct)’ is not equal to ‘length(coef(model))’
来实现此目的,我尝试了
lsmeans
这会对每种特定类型食品的比例进行测试。
我想知道是否也可以通过这种或那种方式获得Tukey posthoc测试,其中在不同的湖泊中比较整体多项分布,即在任何猎物的比例中测试差异吃过? 我试过
lsmeans(fit, pairwise ~ lake | food, adjust="tukey", mode = "prob")
$contrasts
food = bird:
contrast estimate SE df t.ratio p.value
george - hancock -0.04397388 0.05451515 24 -0.807 0.8507
george - oklawaha 0.03680712 0.03849268 24 0.956 0.7751
george - trafford -0.02123255 0.05159049 24 -0.412 0.9760
hancock - oklawaha 0.08078100 0.04983303 24 1.621 0.3863
hancock - trafford 0.02274133 0.06242724 24 0.364 0.9831
oklawaha - trafford -0.05803967 0.04503128 24 -1.289 0.5786
food = fish:
contrast estimate SE df t.ratio p.value
george - hancock -0.02311955 0.09310322 24 -0.248 0.9945
george - oklawaha 0.19874095 0.09273047 24 2.143 0.1683
george - trafford 0.32066789 0.08342262 24 3.844 0.0041
hancock - oklawaha 0.22186050 0.09879102 24 2.246 0.1396
hancock - trafford 0.34378744 0.09088119 24 3.783 0.0047
oklawaha - trafford 0.12192695 0.08577365 24 1.421 0.4987
food = invert:
contrast estimate SE df t.ratio p.value
george - hancock 0.23202865 0.06111726 24 3.796 0.0046
george - oklawaha -0.13967425 0.08808698 24 -1.586 0.4053
george - trafford -0.07193252 0.08346283 24 -0.862 0.8242
hancock - oklawaha -0.37170290 0.07492749 24 -4.961 0.0003
hancock - trafford -0.30396117 0.07129577 24 -4.263 0.0014
oklawaha - trafford 0.06774173 0.09384594 24 0.722 0.8874
food = other:
contrast estimate SE df t.ratio p.value
george - hancock -0.12522495 0.06811177 24 -1.839 0.2806
george - oklawaha 0.03499241 0.05141930 24 0.681 0.9035
george - trafford -0.08643898 0.06612383 24 -1.307 0.5674
hancock - oklawaha 0.16021736 0.06759887 24 2.370 0.1103
hancock - trafford 0.03878598 0.08135810 24 0.477 0.9635
oklawaha - trafford -0.12143138 0.06402725 24 -1.897 0.2560
food = rep:
contrast estimate SE df t.ratio p.value
george - hancock -0.03971026 0.03810819 24 -1.042 0.7269
george - oklawaha -0.13086622 0.05735022 24 -2.282 0.1305
george - trafford -0.14106384 0.06037257 24 -2.337 0.1177
hancock - oklawaha -0.09115595 0.06462624 24 -1.411 0.5052
hancock - trafford -0.10135358 0.06752424 24 -1.501 0.4525
oklawaha - trafford -0.01019762 0.07161794 24 -0.142 0.9989
Results are averaged over the levels of: sex, size
P value adjustment: tukey method for comparing a family of 4 estimates
但这似乎不起作用:
lsmeans(fit, pairwise ~ lake, adjust="tukey", mode = "prob")
有什么想法?
或者有人知道如何$contrasts
contrast estimate SE df t.ratio p.value
george - hancock 3.252607e-19 1.879395e-10 24 0 1.0000
george - oklawaha -8.131516e-19 1.861245e-10 24 0 1.0000
george - trafford -1.843144e-18 2.504062e-10 24 0 1.0000
hancock - oklawaha -1.138412e-18 NaN 24 NaN NaN
hancock - trafford -2.168404e-18 NaN 24 NaN NaN
oklawaha - trafford -1.029992e-18 NaN 24 NaN NaN
为glht
模型工作吗?
答案 0 :(得分:2)
刚刚收到了Russ Lenth的一条消息,他认为在湖泊中进行这些成对比较的语法是为了测试鳄鱼食用的食物项目的多项分布差异
lsm = lsmeans(fit, ~ lake|food, mode = "latent")
cmp = contrast(lsm, method="pairwise", ref=1)
test = test(cmp, joint=TRUE, by="contrast")
There are linearly dependent rows - df are reduced accordingly
test
contrast df1 df2 F p.value
george - hancock 4 24 3.430 0.0236
george - oklawaha 4 24 2.128 0.1084
george - trafford 4 24 3.319 0.0268
hancock - oklawaha 4 24 5.820 0.0020
hancock - trafford 4 24 5.084 0.0041
oklawaha - trafford 4 24 1.484 0.2383
谢谢Russ!