我有一个从数据库生成的Pandas Dataframe,它包含带有混合编码的数据。例如:
+----+-------------------------+----------+------------+------------------------------------------------+--------------------------------------------------------+--------------+-----------------------+
| ID | path | language | date | longest_sentence | shortest_sentence | number_words | readability_consensus |
+----+-------------------------+----------+------------+------------------------------------------------+--------------------------------------------------------+--------------+-----------------------+
| 0 | data/Eng/Sagitarius.txt | Eng | 2015-09-17 | With administrative experience in the prepa... | I am able to relocate internationally on short not... | 306 | 11th and 12th grade |
+----+-------------------------+----------+------------+------------------------------------------------+--------------------------------------------------------+--------------+-----------------------+
| 31 | data/Nor/Høylandet.txt | Nor | 2015-07-22 | Høgskolen i Østfold er et eksempel... | Som skuespiller har jeg både... | 253 | 15th and 16th grade |
+----+-------------------------+----------+------------+------------------------------------------------+--------------------------------------------------------+--------------+-----------------------+
正如所见,有英语和挪威语的混合(我认为在数据库中编码为ISO-8859-1)。我需要将此Dataframe输出的内容作为Markdown表获取,但不会遇到编码问题。我跟着this answer(来自问题Generate Markdown tables?)并获得了以下内容:
import sys, sqlite3
db = sqlite3.connect("Applications.db")
df = pd.read_sql_query("SELECT path, language, date, longest_sentence, shortest_sentence, number_words, readability_consensus FROM applications ORDER BY date(date) DESC", db)
db.close()
rows = []
for index, row in df.iterrows():
items = (row['date'],
row['path'],
row['language'],
row['shortest_sentence'],
row['longest_sentence'],
row['number_words'],
row['readability_consensus'])
rows.append(items)
headings = ['Date',
'Path',
'Language',
'Shortest Sentence',
'Longest Sentence since',
'Words',
'Grade level']
fields = [0, 1, 2, 3, 4, 5, 6]
align = [('^', '<'), ('^', '^'), ('^', '<'), ('^', '^'), ('^', '>'),
('^','^'), ('^','^')]
table(sys.stdout, rows, fields, headings, align)
但是,这会产生UnicodeEncodeError: 'ascii' codec can't encode character u'\xe5' in position 72: ordinal not in range(128)
错误。如何将Dataframe作为Markdown表输出?也就是说,为了将该代码存储在文件中以用于编写Markdown文档。我需要输出看起来像这样:
| ID | path | language | date | longest_sentence | shortest_sentence | number_words | readability_consensus |
|----|-------------------------|----------|------------|------------------------------------------------|--------------------------------------------------------|--------------|-----------------------|
| 0 | data/Eng/Sagitarius.txt | Eng | 2015-09-17 | With administrative experience in the prepa... | I am able to relocate internationally on short not... | 306 | 11th and 12th grade |
| 31 | data/Nor/Høylandet.txt | Nor | 2015-07-22 | Høgskolen i Østfold er et eksempel... | Som skuespiller har jeg både... | 253 | 15th and 16th grade |
答案 0 :(得分:25)
进一步改进答案,以便在IPython Notebook中使用:
def pandas_df_to_markdown_table(df):
from IPython.display import Markdown, display
fmt = ['---' for i in range(len(df.columns))]
df_fmt = pd.DataFrame([fmt], columns=df.columns)
df_formatted = pd.concat([df_fmt, df])
display(Markdown(df_formatted.to_csv(sep="|", index=False)))
pandas_df_to_markdown_table(infodf)
或使用tabulate:
pip install tabulate
使用示例在文档中。
答案 1 :(得分:23)
Pandas 1.0已于2020年1月29日发布,并支持降价转换,因此您现在可以直接执行此操作!
摘自docs的示例:
const functions = require("firebase-functions");
const admin = require("firebase-admin");
const nodemailer = require("nodemailer")
const cors = require("cors")({
origin: true
});
admin.initializeApp();
let transporter = nodemailer.createTransport({
service: 'gmail',
auth: {
user: 'xxxxxxxxxg@gmail.com',
pass: process.env.GMAIL_PASSWORD,
port: 587,
secure: false,
}
});
exports.emailFirma = functions.https.onRequest((req, res) => {
cors(req, res, () => {
const { web, email } = req.body;
const mailOptions = {
from: 'noreply@gmail.com',
to: "xxxxxxxxxxxxg@gmail.com",
subject: `Mail za potvrdu registracije ${email}`,
html: `Web adresa firme: ${web}, provjeriti ispravnost e-maila: ${email}`
};
return transporter.sendMail(mailOptions, (erro) => {
if (erro) {
return res.send(erro.toString());
}
return res.send('Sent');
});
});
});
df = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}, index=['a', 'a', 'b'])
print(df.to_markdown())
或者没有索引:
| | A | B |
|:---|----:|----:|
| a | 1 | 1 |
| a | 2 | 2 |
| b | 3 | 3 |
print(df.to_markdown(index=False)) # use 'showindex' for pandas < 1.1
答案 2 :(得分:15)
我建议使用python-tabulate库来生成ascii-tables。该库也支持pandas.DataFrame
。
以下是如何使用它:
from pandas import DataFrame
from tabulate import tabulate
df = DataFrame({
"weekday": ["monday", "thursday", "wednesday"],
"temperature": [20, 30, 25],
"precipitation": [100, 200, 150],
}).set_index("weekday")
print(tabulate(df, tablefmt="pipe", headers="keys"))
输出:
| weekday | temperature | precipitation |
|:----------|--------------:|----------------:|
| monday | 20 | 100 |
| thursday | 30 | 200 |
| wednesday | 25 | 150 |
答案 3 :(得分:8)
试一试。我得到了它的工作。
请参阅本答案末尾转换为HTML的markdown文件的屏幕截图。
import pandas as pd
# You don't need these two lines
# as you already have your DataFrame in memory
df = pd.read_csv("nor.txt", sep="|")
df.drop(df.columns[-1], axis=1)
# Get column names
cols = df.columns
# Create a new DataFrame with just the markdown
# strings
df2 = pd.DataFrame([['---',]*len(cols)], columns=cols)
#Create a new concatenated DataFrame
df3 = pd.concat([df2, df])
#Save as markdown
df3.to_csv("nor.md", sep="|", index=False)
答案 4 :(得分:5)
我在这篇文章中尝试了上述几种解决方案,发现这种方法效果最好。
要将pandas数据框转换为降价表,我建议使用pytablewriter。 使用这篇文章中提供的数据:
import pandas as pd
import pytablewriter
from StringIO import StringIO
c = StringIO("""ID, path,language, date,longest_sentence, shortest_sentence, number_words , readability_consensus
0, data/Eng/Sagitarius.txt , Eng, 2015-09-17 , With administrative experience in the prepa... , I am able to relocate internationally on short not..., 306, 11th and 12th grade
31 , data/Nor/Høylandet.txt , Nor, 2015-07-22 , Høgskolen i Østfold er et eksempel..., Som skuespiller har jeg både..., 253, 15th and 16th grade
""")
df = pd.read_csv(c,sep=',',index_col=['ID'])
writer = pytablewriter.MarkdownTableWriter()
writer.table_name = "example_table"
writer.header_list = list(df.columns.values)
writer.value_matrix = df.values.tolist()
writer.write_table()
这导致:
# example_table
ID | path |language| date | longest_sentence | shortest_sentence | number_words | readability_consensus
--:|--------------------------|--------|------------|------------------------------------------------|------------------------------------------------------|-------------:|-----------------------
0| data/Eng/Sagitarius.txt | Eng | 2015-09-17 | With administrative experience in the prepa... | I am able to relocate internationally on short not...| 306| 11th and 12th grade
31| data/Nor/Høylandet.txt | Nor | 2015-07-22 | Høgskolen i Østfold er et eksempel... | Som skuespiller har jeg både... | 253| 15th and 16th grade
这是一个降价渲染截图。
答案 5 :(得分:4)
我创建了以下函数,用于将pandas.DataFrame导出为Python中的markdown:
def df_to_markdown(df, float_format='%.2g'):
"""
Export a pandas.DataFrame to markdown-formatted text.
DataFrame should not contain any `|` characters.
"""
from os import linesep
return linesep.join([
'|'.join(df.columns),
'|'.join(4 * '-' for i in df.columns),
df.to_csv(sep='|', index=False, header=False, float_format=float_format)
]).replace('|', ' | ')
此功能可能无法自动修复OP的编码问题,但这与从pandas转换为markdown不同。
答案 6 :(得分:2)
熊猫已合并PR以支持df。 to_markdown()方法。您可以找到更多详细信息here,它应该很快就可以使用。
答案 7 :(得分:1)
是的,所以我从Rohit(Python - Encoding string - Swedish Letters)建议的问题,his answer延长了{{3}},并提出了以下内容:
{
"kadira": {
"appId": "XXXXXXXXXXXXX",
"appSecret": "XXXXXXXXXXXXXXXXXXXXXXX"
},
"reCaptcha": {
"secretKey": "XXXXXXXXXXXXXXXXXXXXXXX"
},
"public": {
"reCaptcha": {
"siteKey": "XXXXXXXXXXXXXXXXXXXXN"
}
}
}
这是一个重要的前提,# Enforce UTF-8 encoding
import sys
stdin, stdout = sys.stdin, sys.stdout
reload(sys)
sys.stdin, sys.stdout = stdin, stdout
sys.setdefaultencoding('UTF-8')
# SQLite3 database
import sqlite3
# Pandas: Data structures and data analysis tools
import pandas as pd
# Read database, attach as Pandas dataframe
db = sqlite3.connect("Applications.db")
df = pd.read_sql_query("SELECT path, language, date, shortest_sentence, longest_sentence, number_words, readability_consensus FROM applications ORDER BY date(date) DESC", db)
db.close()
df.columns = ['Path', 'Language', 'Date', 'Shortest Sentence', 'Longest Sentence', 'Words', 'Readability Consensus']
# Parse Dataframe and apply Markdown, then save as 'table.md'
cols = df.columns
df2 = pd.DataFrame([['---','---','---','---','---','---','---']], columns=cols)
df3 = pd.concat([df2, df])
df3.to_csv("table.md", sep="|", index=False)
和shortest_sentence
列不包含不必要的换行符,因为在提交到SQLite数据库之前将longest_sentence
应用于它们。似乎解决方案不是强制执行特定于语言的编码(挪威语为.replace('\n', ' ').replace('\r', '')
),而是使用ISO-8859-1
代替默认UTF-8
。
我是通过我的IPython笔记本(Python 2.7.10)运行的,并获得了如下表格(此处的外观固定间距):
ASCII
因此,Markdown表没有编码问题。
答案 8 :(得分:1)
这是一个使用pytablewriter
和一些正则表达式的示例函数,使得markdown表更类似于数据帧在Jupyter上的显示方式(行标题为粗体)。
import io
import re
import pandas as pd
import pytablewriter
def df_to_markdown(df):
"""
Converts Pandas DataFrame to markdown table,
making the index bold (as in Jupyter) unless it's a
pd.RangeIndex, in which case the index is completely dropped.
Returns a string containing markdown table.
"""
isRangeIndex = isinstance(df.index, pd.RangeIndex)
if not isRangeIndex:
df = df.reset_index()
writer = pytablewriter.MarkdownTableWriter()
writer.stream = io.StringIO()
writer.header_list = df.columns
writer.value_matrix = df.values
writer.write_table()
writer.stream.seek(0)
table = writer.stream.readlines()
if isRangeIndex:
return ''.join(table)
else:
# Make the indexes bold
new_table = table[:2]
for line in table[2:]:
new_table.append(re.sub('^(.*?)\|', r'**\1**|', line))
return ''.join(new_table)
答案 9 :(得分:1)
使用外部工具pandoc
和管道:
def to_markdown(df):
from subprocess import Popen, PIPE
s = df.to_latex()
p = Popen('pandoc -f latex -t markdown',
stdin=PIPE, stdout=PIPE, shell=True)
stdoutdata, _ = p.communicate(input=s.encode("utf-8"))
return stdoutdata.decode("utf-8")
答案 10 :(得分:1)
对于那些使用tabulate
寻找如何做到这一点的人,我想我会把它放在这里为你节省一些时间:
print(tabulate(df, tablefmt="pipe", headers="keys", showindex=False))
答案 11 :(得分:1)
另一个解决方案。这次通过列表周围的薄包装:https://www.elastic.co/guide/en/elasticsearch/guide/master/_how_match_uses_bool.html
import numpy as np
import pandas as pd
import tabulatehelper as th
df = pd.DataFrame(np.random.random(16).reshape(4, 4), columns=('a', 'b', 'c', 'd'))
print(th.md_table(df, formats={-1: 'c'}))
输出:
| a | b | c | d |
|---------:|---------:|---------:|:--------:|
| 0.413284 | 0.932373 | 0.277797 | 0.646333 |
| 0.552731 | 0.381826 | 0.141727 | 0.2483 |
| 0.779889 | 0.012458 | 0.308352 | 0.650859 |
| 0.301109 | 0.982111 | 0.994024 | 0.43551 |