我一直试图找出如何在网络摄像头上应用Hough变换。但是我得到的错误是它没有合适的格式,即使我将其缩放到一个已检查的状态,看它是否在uint8中。
cap = cv2.VideoCapture(1)
while(True):
ret, frame = cap.read()
frame = cv2.medianBlur(frame,5)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
###
#HughCircles Detection TEST
circles = cv2.HoughCircles(frame,cv2.HOUGH_GRADIENT,1,50,
param1=50,param2=30,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles))
if circles is None:
for i in circles[0,:]:
# draw the outer circle
cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
#
###
# Display the resulting frame
cv2.imshow('Board',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
答案 0 :(得分:1)
好的,看到另一篇文章,我看到圈子实际上在没有任何可见的情况下返回None,所以必须有一个if,以致它没有引用None。
cap = cv2.VideoCapture(1)
while(True):
ret, frame = cap.read()
frame = cv2.medianBlur(frame,5)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
###
#HughCircles Detection TEST
circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1,50,
param1=50,param2=30,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles))
if circles != None:
for i in circles[0,:]:
# draw the outer circle
cv2.circle(gray,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(gray,(i[0],i[1]),2,(0,0,255),3)
#
###
# Display the resulting frame
cv2.imshow('Board',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break