我正在尝试使用pandas reindex函数填充我的时间序列数据中的缺失行。 我的数据如下:
100,2007,239,4,29.588,-30.851,-999.0,-999.0,-999.0,-999.00,13.125,-999.00
100,2007,239,5,29.573,-30.843,-999.0,-999.0,-999.0,-999.00,13.126,-999.00
100,2007,239,14,29.389,-30.880,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,15,29.367,-30.901,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,24,29.374,-30.920,-999.0,-999.0,-999.0,-999.00,13.135,-999.00
.
.
是第一列表示的一分钟时间间隔的一天的时间序列数据。与正常时间序列索引不同,该数据的时间索引看起来像0到59,100到159 ...... 2300到2359,因为1天是24小时,1小时是60分钟。所以,填补与“南方”的差距。价值,我把代码作为下面的代码:
S = []
for i in range(0,24):
s = np.arange(i*100,i*100+60)
s = list(s)
S = S + s
pd.set_option('max_rows',10)
for INPUT in FileList:
output = INPUT + "result" # set the output files
data=pd.read_csv(INPUT,sep=',',index_col=[3],parse_dates=[3])
index = 'S'#make the reference index to fill
df = data
sk_f = df.reindex(index)
sk_f.to_csv(output,na_rep='nan')
通过这段代码,我的目的是通过“' nan'基于作为参考索引的S的第四列中的指示。 但结果却只是排成一排的' nan'而不是如下所示填补空白:
,100,2007,241,22.471,-31.002,-999.0,-999.0.1,-999.0.2,-999.00,13.294,-999.00 .1
0,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
1,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
2,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
3,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
4,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
5,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
6,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
7,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
8,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
9,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
10,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
11,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan,nan
我的期望是填补原始数据中缺失线的空白。例如,在原始数据中,0到3索引行之间没有低点。所以我想用原始数据格式填充这些行。 我可能会错过一些东西 如果你能给出任何想法或帮助,我将非常感激。
谢谢你, 艾萨克
答案 0 :(得分:1)
首先,我发现有问题的缩进与创建列表S = S + s
。您必须使用,因为列表S
仅保留了s
:
S = []
for i in range(0,24):
s = np.arange(i*100,i*100+60)
s = list(s)
S = S + s #keep only last s
到:
S = []
for i in range(0,24):
s = np.arange(i*100,i*100+60)
s = list(s)
S = S + s
或更短:
S = []
for i in range(0,24):
S = S + list(np.arange(i*100,i*100+60))
接下来是有问题的index = 'S'
我认为,它是拼写错误,可能是index = S
。
您可以添加函数bfill()
并向后填补空白。 link
sk_f = df.reindex(index).bfill()
代码:
import pandas as pd
import numpy as np
import io
S = []
for i in range(0,24):
S = S + list(np.arange(i*100,i*100+60))
#original data
temp=u"""100,2007,239,4,29.588,-30.851,-999.0,-999.0,-999.0,-999.00,13.125,-999.00
100,2007,239,5,29.573,-30.843,-999.0,-999.0,-999.0,-999.00,13.126,-999.00
100,2007,239,14,29.389,-30.880,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,15,29.367,-30.901,-999.0,-999.0,-999.0,-999.00,13.131,-999.00
100,2007,239,24,29.374,-30.920,-999.0,-999.0,-999.0,-999.00,13.135,-999.00"""
#pd.set_option('max_rows',10)
data=pd.read_csv(io.StringIO(temp),sep=',', header=None, index_col=[3], parse_dates=[3])
data.index.name = None
print data
# 0 1 2 4 5 6 7 8 9 10 11
#4 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#5 100 2007 239 29.573 -30.843 -999 -999 -999 -999 13.126 -999
#14 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#15 100 2007 239 29.367 -30.901 -999 -999 -999 -999 13.131 -999
#24 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
index = S #make the reference index to fill
df = data
sk_f = df.reindex(index).bfill()
print sk_f.head(20)
# 0 1 2 4 5 6 7 8 9 10 11
#0 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#1 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#2 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#3 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#4 100 2007 239 29.588 -30.851 -999 -999 -999 -999 13.125 -999
#5 100 2007 239 29.573 -30.843 -999 -999 -999 -999 13.126 -999
#6 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#7 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#8 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#9 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#10 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#11 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#12 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#13 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#14 100 2007 239 29.389 -30.880 -999 -999 -999 -999 13.131 -999
#15 100 2007 239 29.367 -30.901 -999 -999 -999 -999 13.131 -999
#16 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
#17 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
#18 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999
#19 100 2007 239 29.374 -30.920 -999 -999 -999 -999 13.135 -999