使用optim,ML将Gamma分布拟合到R中的数据

时间:2015-10-06 17:39:42

标签: r machine-learning gamma

我是R的新手。我有一个数据集,其中还包括家庭收入数据,我必须使用最大似然估计拟合Gamma分布到这些数据。具体告诉我们需要使用package optim,而不是fitdistr。所以这是我的代码:

proc_open($cmd, [['pipe', 'r'],['pipe', 'w'],['pipe', 'w']], $pipes, NULL, array_merge($_SERVER, $environment_variables))

还试图填充init向量中的值,并包括这段代码;

t1 <- sum(log(newdata$faminc)) 
t2 <- sum(newdata$faminc)
obs <- nrow(newdata)
lh.gamma <- function(par) {
  -((par[1]-1)*t1 - par[2]*t2 - obs*par[1]*log(par[2]) - obs*lgamma(par[1]))
}

#initial guess for a = mean^2(x)/var(x) and b = mean(x) / var(x) 
a1 <- (mean(newdata$faminc))^2/var(newdata$faminc)
b1 <- mean(newdata$faminc)/var(newdata$faminc)

init <- c(a1,b1)
q <- optim(init, lh.gamma, method = "BFGS")
q

然后优化看起来像:

  dlh.gamma <- function(par){
  cbind(obs*digamma(par[1])+obs*log(par[2])-t2,
     obs*par[1]/par[2]-1/par[2]^2*t1)
}

它们都不起作用。首先,当我在学校计算机上尝试代码时,它给出了非常大的数字形状和速率参数,这是不可能的。现在,在家里尝试,我明白了:

 q <- optim(init, lh.gamma, dhl.gamma, method="BFGS")

q甚至没有'创建'。除了当我在上面包含dlh.gamma部分时,然后我再次获得巨大的数字并且没有收敛。

任何知道出了什么问题/怎么做的人?

编辑:

> q <- optim(init, lh.gamma, method = "BFGS")
Error in optim(init, lh.gamma, method = "BFGS") : 
  non-finite finite-difference value [2]
In addition: There were 50 or more warnings (use warnings() to see the first 50)
> q
function (save = "default", status = 0, runLast = TRUE) 
.Internal(quit(save, status, runLast))
<bytecode: 0x000000000eaac960>
<environment: namespace:base>

faminc变量是1000s

Edit2:

好的,代码很好,但现在我尝试使用以下内容在直方图上拟合分布:

> dput(sample(newdata$faminc, 500))
c(42.5, 87.5, 22.5, 17.5, 12.5, 30, 30, 17.5, 42.5, 62.5, 62.5, 
30, 30, 150, 22.5, 30, 42.5, 30, 17.5, 8.75, 42.5, 42.5, 42.5, 
62.5, 42.5, 30, 17.5, 87.5, 62.5, 150, 42.5, 150, 42.5, 42.5, 
42.5, 6.25, 62.5, 87.5, 6.25, 87.5, 30, 150, 22.5, 62.5, 42.5,    
150, 17.5, 42.5, 42.5, 42.5, 62.5, 22.5, 42.5, 42.5, 30, 62.5, 
30, 62.5, 87.5, 87.5, 42.5, 22.5, 62.5, 22.5, 8.75, 30, 30, 17.5, 
87.5, 8.75, 62.5, 30, 17.5, 22.5, 62.5, 42.5, 30, 17.5, 62.5, 
8.75, 62.5, 42.5, 150, 30, 62.5, 87.5, 17.5, 62.5, 30, 62.5, 
87.5, 42.5, 62.5, 30, 62.5, 42.5, 87.5, 150, 12.5, 42.5, 62.5, 
42.5, 62.5, 62.5, 150, 30, 87.5, 12.5, 17.5, 42.5, 62.5, 30, 
6.25, 62.5, 42.5, 12.5, 62.5, 8.75, 17.5, 42.5, 62.5, 87.5, 8.75, 
62.5, 30, 62.5, 87.5, 42.5, 62.5, 62.5, 12.5, 150, 42.5, 62.5,  
12.5, 62.5, 42.5, 62.5, 62.5, 87.5, 42.5, 62.5, 30, 42.5, 150, 
42.5, 30, 62.5, 62.5, 87.5, 42.5, 30, 62.5, 62.5, 42.5, 42.5, 
30, 62.5, 42.5, 42.5, 62.5, 62.5, 150, 42.5, 30, 42.5, 62.5, 
17.5, 62.5, 17.5, 150, 8.75, 62.5, 30, 62.5, 42.5, 42.5, 22.5, 
150, 62.5, 42.5, 62.5, 62.5, 22.5, 30, 62.5, 30, 150, 42.5, 42.5, 
42.5, 62.5, 30, 12.5, 30, 150, 12.5, 8.75, 22.5, 30, 22.5, 30, 
42.5, 42.5, 42.5, 30, 12.5, 62.5, 42.5, 30, 22.5, 42.5, 87.5, 
22.5, 12.5, 42.5, 62.5, 62.5, 62.5, 30, 42.5, 30, 62.5, 30, 62.5, 
12.5, 22.5, 42.5, 22.5, 87.5, 30, 22.5, 17.5, 42.5, 62.5, 17.5, 
250, 150, 42.5, 30, 42.5, 30, 62.5, 17.5, 87.5, 22.5, 150, 62.5, 
42.5, 6.25, 87.5, 62.5, 42.5, 30, 42.5, 62.5, 42.5, 87.5, 62.5, 
150, 42.5, 30, 6.25, 22.5, 30, 42.5, 42.5, 62.5, 250, 8.75, 150, 
42.5, 30, 42.5, 30, 42.5, 42.5, 30, 30, 150, 22.5, 62.5, 30, 
8.75, 150, 62.5, 87.5, 150, 42.5, 30, 42.5, 42.5, 42.5, 30, 8.75, 
42.5, 42.5, 30, 22.5, 62.5, 17.5, 62.5, 62.5, 42.5, 8.75, 42.5, 
12.5, 12.5, 150, 42.5, 42.5, 17.5, 42.5, 62.5, 62.5, 42.5, 42.5, 
30, 42.5, 62.5, 30, 62.5, 42.5, 42.5, 42.5, 22.5, 62.5, 62.5, 
62.5, 22.5, 150, 62.5, 42.5, 62.5, 42.5, 30, 30, 62.5, 22.5, 
62.5, 87.5, 62.5, 42.5, 42.5, 22.5, 62.5, 62.5, 30, 42.5, 42.5, 
8.75, 87.5, 42.5, 42.5, 87.5, 30, 62.5, 17.5, 62.5, 42.5, 17.5, 
22.5, 62.5, 8.75, 62.5, 22.5, 22.5, 22.5, 42.5, 17.5, 22.5, 62.5, 
42.5, 42.5, 42.5, 42.5, 42.5, 30, 30, 8.75, 30, 42.5, 62.5, 22.5, 
6.25, 30, 42.5, 62.5, 17.5, 62.5, 42.5, 8.75, 22.5, 30, 17.5, 
22.5, 62.5, 42.5, 150, 87.5, 22.5, 12.5, 62.5, 62.5, 62.5, 30, 
42.5, 22.5, 62.5, 87.5, 30, 42.5, 62.5, 22.5, 87.5, 30, 30, 22.5, 
87.5, 87.5, 250, 30, 62.5, 250, 62.5, 42.5, 42.5, 62.5, 62.5, 
42.5, 6.25, 62.5, 62.5, 62.5, 42.5, 42.5, 150, 62.5, 62.5, 30, 
150, 22.5, 87.5, 30, 150, 17.5, 8.75, 62.5, 42.5, 62.5, 150, 
42.5, 22.5, 42.5, 42.5, 17.5, 62.5, 17.5, 62.5, 42.5, 150, 250, 
22.5, 42.5, 30, 62.5, 62.5, 42.5, 42.5, 30, 150, 150, 42.5, 17.5, 
17.5, 42.5, 8.75, 62.5, 42.5, 42.5, 22.5, 150, 62.5, 30, 250, 
62.5, 87.5, 62.5, 8.75, 62.5, 30, 30, 8.75, 17.5, 17.5, 150, 
22.5, 62.5, 62.5, 42.5)

它只是在x轴上产生一条扁平的蓝线。

1 个答案:

答案 0 :(得分:1)

你有一些事情正在发生,我还没有能够解决,但这里有一个估计的证明。

让我们从生成一些数据开始(所以我们知道优化是否正常)。我只更改了下面的优化函数,并使用了Nelder-Mead而不是准牛顿。

set.seed(23)
a <- 2 # shape
b <- 3 # rate

require(data.table)
newdata <- data.table(faminc = rgamma(10000, a, b))

t1 <- sum(log(newdata$faminc)) 
t2 <- sum(newdata$faminc)
obs <- nrow(newdata)

llf <- function(x){
  a <- x[1]
  b <- x[2]
  # log-likelihood function
  return( - ((a - 1) * t1 - b * t2 - obs * a * log(1/b) - obs * log(gamma(a))))
}

# initial guess for a = mean^2(x)/var(x) and b = mean(x) / var(x) 
a1 <- (mean(newdata$faminc))^2/var(newdata$faminc)
b1 <- mean(newdata$faminc)/var(newdata$faminc)

q <- optim(c(a1, b1), llf)
q$par
[1] 2.024353 3.019376

我说我们非常接近。

使用您的数据:

(est <- q$par)
[1] 2.21333613 0.04243384

theoretical <- data.table(true = rgamma(10000, est[1], est[2]))
library(ggplot2)
ggplot(newdata, aes(x = faminc)) + geom_density() + geom_density(data = theoretical, aes(x = true, colour = "red")) + theme(legend.position = "none")

enter image description here

不是很好,但500 obs是合理的。

对OP编辑2的回应:

您应该更仔细地查看您正在使用的函数,curve接受函数参数,而不是向量值:

gamma_density = function(x, a, b) ((b^a)/gamma(a)) * (x^(a - 1)) * exp(-b * x)
hist(newdata$faminc, prob = TRUE, ylim = c(0, 0.015))
curve(gamma_density(x, a = q$par[1], b = q$par[2]), add=TRUE, col='blue')

enter image description here