我正在使用R中fitdist
包中的fitdistrplus
函数
我有以下数据(我使用read.table
阅读):
A <- structure(list(V1 = c(-0.00707717, -0.000947418, -0.00189753,
-0.000474947, -0.00190205, -0.000476077, 0.00237812, 0.000949668,
0.000474496, 0.00284226, -0.000473149, -0.000473373, 0, 0, 0.00283688,
-0.0037843, -0.0047506, -0.00238379, -0.00286807, 0.000478583,
0.000478354, -0.00143575, 0.00143575, 0.00238835, 0.0042847,
0.00237248, -0.00142281, -0.00142484, 0, 0.00142484, 0.000948767,
0.00378609, -0.000472478, 0.000472478, -0.0014181, 0, -0.000946522,
-0.00284495, 0, 0.00331832, 0.00283554, 0.00141476, -0.00141476,
-0.00188947, 0.00141743, -0.00236351, 0.00236351, 0.00235794,
0.00235239, -0.000940292, -0.0014121, -0.00283019, 0.000472255,
0.000472032, 0.000471809, -0.0014161, 0.0014161, -0.000943842,
0.000472032, -0.000944287, -0.00094518, -0.00189304, -0.000473821,
-0.000474046, 0.00331361, -0.000472701, -0.000946074, 0.00141878,
-0.000945627, -0.00189394, -0.00189753, -0.0057143, -0.00143369,
-0.00383326, 0.00143919, 0.000479272, -0.00191847, -0.000480192,
0.000960154, 0.000479731, 0, 0.000479501, 0.000958313, -0.00383878,
-0.00240674, 0.000963391, 0.000962464, -0.00192586, 0.000481812,
-0.00241138, -0.00144963)), .Names = "V1", row.names = c(NA,
-91L), class = "data.frame")
我运行了以下命令:
fitdist(A$V1,"norm",method="mge",gof="CvM")
并生成以下内容:
Fitting of the distribution ' norm ' by maximum goodness-of-fit
Parameters:
estimate
1 NA
2 NA
Warning message:
In pnorm(q, mean, sd, lower.tail, log.p) : NaNs produced
鉴于上述错误消息,我运行了以下内容:
> mu=mean(A$V1)
> sigma=sd(A$V1)
> mu
[1] -0.0003091273
> sigma
[1] 0.002051825
> pnorm(A$V1,mu,sigma)
[1] 0.0004859313 0.3778682282 0.2194235651 0.4677942525 0.2187728328
[6] 0.4675752645 0.9048490462 0.7302272325 0.6487379052 0.9377179215
[11] 0.4681427154 0.4680993016 0.5598779146 0.5598779146 0.9373956798
[16] 0.0451612910 0.0152074342 0.1559769817 0.1061704134 0.6494763806
[21] 0.6494350178 0.2914741494 0.8024493726 0.9056899734 0.9874187360
[26] 0.9043830715 0.2936417791 0.2933012328 0.5598779146 0.8009684336
[31] 0.7300820807 0.9770270687 0.4682727654 0.6483730677 0.2944326177
[36] 0.5598779146 0.3780342225 0.1082503682 0.5598779146 0.9614622560
[41] 0.9373152170 0.7995942319 0.2949940199 0.2205866970 0.7999587855
[46] 0.1583537921 0.9036385181 0.9031740418 0.9027096003 0.3791890228
[51] 0.2954414771 0.1095934742 0.6483327428 0.6482924162 0.6482520879
[56] 0.2947687275 0.7997772412 0.3785308577 0.6482924162 0.3784483801
[61] 0.3782828856 0.2200710780 0.4680124750 0.4679688685 0.9612699580
[66] 0.4682295443 0.3781172281 0.8001429585 0.3782000541 0.2199411992
[71] 0.2194235651 0.0042152418 0.2918187280 0.0429384302 0.8029149383
[76] 0.6496008197 0.2164182554 0.4667778828 0.7319136560 0.6496837100
[81] 0.5598779146 0.6496421754 0.7316179594 0.0426934572 0.1533157552
[86] 0.7324331764 0.7322844499 0.2153633562 0.6500594259 0.1527813896
[91] 0.2891573876
所以现在我很困惑为什么我收到有关NaN
的上述错误消息。任何人都有任何建议可能是什么原因和修复?
对于柯西分布,我尝试了以下内容:
`> fitdist(A$V1*10^9,"cauchy",method="mle")
Error in fitdist(A$V1 * 10^9, "cauchy", method = "mle") :
the function mle failed to estimate the parameters,
with the error code 100
In addition: Warning message:
In dcauchy(x, location, scale, log) : NaNs produced
> fitdist(A$V1*10^5,"cauchy",method="mle")
Error in fitdist(A$V1 * 10^5, "cauchy", method = "mle") :
the function mle failed to estimate the parameters,
with the error code 100
In addition: Warning message:
In dcauchy(x, location, scale, log) : NaNs produced
> fitdist(A$V1*10^5,"cauchy",method="mge",gof="CvM")
Fitting of the distribution ' cauchy ' by maximum goodness-of-fit
Parameters:
estimate
1 NA
2 NA
Warning message:
In pcauchy(q, location, scale, lower.tail, log.p) : NaNs produced
> fitdist(A$V1*10^5,"cauchy",method="mge",gof="AD")
Fitting of the distribution ' cauchy ' by maximum goodness-of-fit
Parameters:
estimate
1 NA
2 NA
Warning message:
In pcauchy(q, location, scale, lower.tail, log.p) : NaNs produced
> fitdist(A$V1*10^9,"cauchy",method="mge",gof="AD")
Fitting of the distribution ' cauchy ' by maximum goodness-of-fit
Parameters:
estimate
1 NA
2 NA
Warning message:
In pcauchy(q, location, scale, lower.tail, log.p) : NaNs produced
> fitdist(A$V1+10^3,"cauchy",method="mle")
Error in fitdist(A$V1 + 10^3, "cauchy", method = "mle") :
the function mle failed to estimate the parameters,
with the error code 100
In addition: Warning message:
In dcauchy(x, location, scale, log) : NaNs produced
有关修复的任何建议......谢谢!
答案 0 :(得分:5)
以下答案。
library(fitdistrplus)
A <- structure(list(V1 = c(-0.00707717, -0.000947418, -0.00189753,
-0.000474947, -0.00190205, -0.000476077, 0.00237812, 0.000949668,
0.000474496, 0.00284226, -0.000473149, -0.000473373, 0, 0, 0.00283688,
-0.0037843, -0.0047506, -0.00238379, -0.00286807, 0.000478583,
0.000478354, -0.00143575, 0.00143575, 0.00238835, 0.0042847,
0.00237248, -0.00142281, -0.00142484, 0, 0.00142484, 0.000948767,
0.00378609, -0.000472478, 0.000472478, -0.0014181, 0, -0.000946522,
-0.00284495, 0, 0.00331832, 0.00283554, 0.00141476, -0.00141476,
-0.00188947, 0.00141743, -0.00236351, 0.00236351, 0.00235794,
0.00235239, -0.000940292, -0.0014121, -0.00283019, 0.000472255,
0.000472032, 0.000471809, -0.0014161, 0.0014161, -0.000943842,
0.000472032, -0.000944287, -0.00094518, -0.00189304, -0.000473821,
-0.000474046, 0.00331361, -0.000472701, -0.000946074, 0.00141878,
-0.000945627, -0.00189394, -0.00189753, -0.0057143, -0.00143369,
-0.00383326, 0.00143919, 0.000479272, -0.00191847, -0.000480192,
0.000960154, 0.000479731, 0, 0.000479501, 0.000958313, -0.00383878,
-0.00240674, 0.000963391, 0.000962464, -0.00192586, 0.000481812,
-0.00241138, -0.00144963)), .Names = "V1", row.names = c(NA,
-91L), class = "data.frame")
#your data are very small
summary(A$V1)
#fit dist does not converge with parameter
fitdist(A$V1,"norm",method="mge",gof="CvM")
#arguments are correctly specified
?fitdist
#equivalent call of mgedist -> same problem
mgedist(A$V1,"norm",gof="CvM")
#with uniform distribution it works
fitdist(A$V1,"unif",method="mge")
#as well as with mme and mle
fitdist(A$V1,"norm",method="mme")
fitdist(A$V1,"norm",method="mle")
#so the problem comes with the mean or the sd parameters of the normal distribution.
#as returns a result, sd is the problem
mgedist(A$V1,"norm",gof="CvM", fix.arg=list(sd=sd(A$V1)), start=list(mean=0))
#fixing a lower bound for sd returns a result
mgedist(A$V1,"norm",gof="CvM", lower=c(-1, .01))
#but the appropriate answer to your problem is to rescale your data.
#it works perfectly.
mgedist(1000*A$V1,"norm",gof="CvM", lower=c(-1, 1e-3))
#we don't even need to use lower bounds.
mgedist(1000*A$V1,"norm",gof="CvM")
#looking at the source code of mgedist, one can see, that the distance
#of Cramer von Mises is defined as follows.
fnobj <- function(par, fix.arg, obs, pdistnam) {
n <- length(obs)
s <- sort(obs)
theop <- do.call(pdistnam, c(list(q = s), as.list(par),
as.list(fix.arg)))
1/(12 * n) + sum((theop - (2 * seq(1:n) - 1)/(2 *
n))^2)
}
#a NaN is produced with negative sd
fnobj(c(1,1), NULL, A$V1, pnorm)
fnobj(c(mean=1,sd=1), NULL, A$V1, pnorm)
fnobj(c(mean=0,sd=0), NULL, A$V1, pnorm)
fnobj(c(mean=0,sd=-1), NULL, A$V1, pnorm)
答案 1 :(得分:4)
将我视为fitdist调用的函数mgedist中的错误:查看行
if (!cens)
opttryerror <- try(opt <- optim(par = vstart, fn = fnobj,
fix.arg = fix.arg, obs = data, pdistnam = pdistname, hessian = TRUE,
method = meth, lower = lower, upper = upper, ...), silent = TRUE)
else
stop("Maximum goodness-of-fit estimation is not yet available for censored data.")
实际上,你引发了一个错误,因为method参数传递了两次,一次作为命名参数,另一次传递给....该错误被捕获,您作为输出收到的只是一个“默认”返回。
与维护人员交谈以解决问题。