我有一个包含让我们说[25,15,8,20]的数组 我想找到所有可能的数字排列。
预期产出:
25 15 8 20
25 15 20 8
25 20 15 8
25 20 8 15
25 8 20 15
25 8 15 20
15 25 8 20
15 25 20 8
15 20 25 8
15 20 8 25
15 8 20 25
15 8 25 20
20 25 15 8
20 25 8 15
20 8 25 15
20 8 15 25
20 15 25 8
20 15 8 25
8 15 20 25
8 15 25 20
8 25 15 20
8 25 20 15
8 20 15 25
8 20 25 15
void print(int *num, int n)
{
int i;
for ( i = 0 ; i < n ; i++)
printf("%d ", num[i]);
printf("\n");
}
int main()
{
int num[N];
int *ptr;
int temp;
int i, n, j;
printf("\nHow many number you want to enter: ");
scanf("%d", &n);
printf("\nEnter a list of numbers to see all combinations:\n");
for (i = 0 ; i < n; i++)
scanf("%d", &num[i]);
for (j = 1; j <= n; j++) {
for (i = 0; i < n-1; i++) {
temp = num[i];
num[i] = num[i+1];
num[i+1] = temp;
print(num, n);
}
}
return 0;
}
上述程序未提供所有可能的输出。如何获得内部交换并获得组合
答案 0 :(得分:1)
找到所有排列和排列数有几个方面。通过以下评论显示,要计算k
元素总数中n
个尺寸组的排列数,您会发现n
上的阶乘除以{{1}的阶乘数可以组成k
元素的大小组。对于查找四元素数组中所有4个元素的所有排列的情况,存在n
个可能的排列。
然后递归地找到可用的排列。如果您有任何问题,请查看以下内容并告诉我:
24
使用/输出强>
#include <stdio.h>
#include <stdlib.h>
void swap (int *x, int *y);
unsigned long long nfact (size_t n);
unsigned long long pnk (size_t n, size_t k);
void permute (int *a, size_t i, size_t n);
void prnarray (int *a, size_t sz);
int main (void) {
int array[] = { 25, 15, 8, 20 };
size_t sz = sizeof array/sizeof *array;
/* calculate the number of permutations */
unsigned long long p = pnk (sz , sz);
printf ("\n total permutations : %llu\n\n", p);
/* permute the array of numbers */
printf (" permutations:\n\n");
permute (array, 0, sz);
putchar ('\n');
return 0;
}
/* Function to swap values at two pointers */
void swap (int *x, int *y)
{ int temp;
temp = *x;
*x = *y;
*y = temp;
}
/* calculate n factorial */
unsigned long long nfact (size_t n)
{ if (n <= 0) return 1;
unsigned long long s = n;
while (--n) s *= n;
return s;
}
/* calculate possible permutations */
unsigned long long pnk (size_t n, size_t k)
{ size_t d = (k < n ) ? n - k : 1;
return nfact (n) / nfact (d);
}
/* permute integer array for elements 'i' through 'n' */
void permute (int *a, size_t i, size_t n)
{ size_t j;
if (i == n)
prnarray (a, n);
else
for (j = i; j < n; j++) {
swap ((a+i), (a+j));
permute (a, i+1, n);
swap ((a+i), (a+j)); // backtrack
}
}
void prnarray (int *a, size_t sz)
{ size_t i;
for (i = 0; i < sz; i++) printf (" %2d", a[i]);
putchar ('\n');
}
注意:对于字符串,这种方法可以正常工作,但不会导致对可能的排列进行词汇排序。
答案 1 :(得分:0)
诀窍是,你不能只置换相邻的值,看看当3被固定在index = 1时,4永远不会放弃它,所以你必须逐渐将排列扩展到更多的值。
#include <stdio.h>
#include <string.h>
#include <malloc.h>
void print(int *num, int n)
{
int i;
for ( i = 0 ; i < n ; i++)
printf("%d ", num[i]);
printf("\n");
}
int*permute(int*i,int h)
{
int temp = *i;
*i = *(i+h);
*(i+h) = temp;
return i+1;
}
void recursive_permute(int*i,int *j,int n)
{
if((j-i)==n-1) {print(i,n);return;};
int *tmparray=(int*)malloc(n*sizeof(int));
memcpy(tmparray,i,n*sizeof(int));
recursive_permute(tmparray,tmparray+(j-i+1),n);
for (int h=1;h<n-(j-i);h++) recursive_permute(tmparray,permute(tmparray+(j-i),h),n);
}
int main()
{
int num[100];
int *ptr;
int temp;
int i, n, j;
printf("\nHow many number you want to enter: ");
scanf("%d", &n);
printf("\nEnter a list of numbers to see all combinations:\n");
for (i = 0 ; i < n; i++)
scanf("%d", &num[i]);
printf("my recursive method ---------------------------\n");
recursive_permute(num,num,n);
printf("your method -----------------------------------\n");
for (j = 1; j <= n; j++) {
for (i = 0; i < n-1; i++) {
temp = num[i];
num[i] = num[i+1];
num[i+1] = temp;
print(num, n);
}
}
return 0;
}