使用uniform_int_distribution与模数运算有什么好处?

时间:2015-09-30 07:47:55

标签: c++ c++11 random stl

根据以下结果,使用%操作生成两个数字之间的均匀随机整数几乎比使用std::uniform_int_distribution快3倍:是否有充分的理由使用std::uniform_int_distribution

代码:

#include <iostream>
#include <functional>
#include <vector>
#include <algorithm>
#include <random>

#include <cstdio>
#include <cstdlib>

using namespace std;

#define N 100000000

int main()
{

clock_t tic,toc;

for(int trials=0; trials<3; trials++)
{
    cout<<"trial: "<<trials<<endl;

    // uniform_int_distribution
    {
        int res = 0;
        mt19937 gen(1);
        uniform_int_distribution<int> dist(0,999);

        tic = clock();
        for(int i=0; i<N; i++)
        {
            int r = dist(gen);
            res += r;
            res %= 1000;
        }
        toc = clock();
        cout << "uniform_int_distribution: "<<(float)(toc-tic)/CLOCKS_PER_SEC << endl;
        cout<<res<<" "<<endl;

    }

    // simple modulus operation
    {
        int res = 0;
        mt19937 gen(1);

        tic = clock();
        for(int i=0; i<N; i++)
        {
            int r = gen()%1000;
            res += r;
            res %= 1000;
        }
        toc = clock();
        cout << "simple modulus operation: "<<(float)(toc-tic)/CLOCKS_PER_SEC << endl;
        cout<<res<<" "<<endl;

    }

    cout<<endl;
}

}

输出:

trial: 0
uniform_int_distribution: 2.90289
538 
simple modulus operation: 1.0232
575 

trial: 1
uniform_int_distribution: 2.86416
538 
simple modulus operation: 1.01866
575 

trial: 2
uniform_int_distribution: 2.94309
538 
simple modulus operation: 1.01809
575 

1 个答案:

答案 0 :(得分:40)

当您使用modulo(%)映射范围时,您将获得统计偏差 rand()到另一个间隔。

例如,假设rand()统一(没有偏见)映射到[0, 32767],并且您希望映射到[0,4] rand() % 5。那么值0,1和2平均将在32768次中产生6554,但值3和4仅产生6553次(因此3 * 6554 + 2 * 6553 = 32768)。

偏差很小(0.01%),但取决于您的应用可能会致命。观看Stephan T. Lavavej的演讲&#34; rand() considered harmful&#34;了解更多详情。