我做了一个实验,参与者被要求传递一个4人传播链的故事,有点像游戏中国的低语。第1人阅读故事并为第2人重新编写故事,第2人也这样做,并且一直持续到链中的所有四个人都阅读并复制故事。我很感兴趣的是,正面或负面的信息在复制品中是否能够“更好地存活”。我已经用这两种方式建模:一种方法是将原始故事中的每个项目编码为复制中的存在(1)或不存在(0),并使用逻辑模型对其进行建模:
survival.logit <- glmer(Present ~ Posn.c*mood.c*Valence.c + (1+Valence.c|mood.c/Chain.) + (1|Item), data = Survival.Analysis_restructureddata, family = binomial, glmerControl(optimizer="bobyqa", check.conv.grad=.makeCC("warning", 2e-3)))
另一种方法是计算链中丢失的每种语句的数量,并使用泊松或负二项模型对此数据进行建模。
survival.count <- glmer.nb(Loss_across.Chain ~ Posn.c*mood.c*Valence.c + (1 + Valence.c|mood.c/Chain), data = FinalData_forpoisson, control = glmerControl(optimizer = "bobyqa", check.conv.grad = .makeCC("warning", 0.05)))
每个模型中的固定因素是:
Posn.c - 链中的位置(居中)
mood.c - 情绪状态(组间因素,中心)Valence.c - 项目的化合价(正面或负面,居中)
两个模型都返回相似的结果,只有一个关键的例外 - 链中的位置与价态之间的相互作用在逻辑模型中并不显着,但在负二项模型中非常重要。为什么会出现这种情况?绘制数据图表表明确实存在相互作用,因此正链信息的损失速度快于链中的负数。
任何帮助将不胜感激!
编辑:请参见以下两种型号的型号输出:
物流:
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: Present ~ Posn.c * mood.c * Valence.c + (1 + Valence.c | mood.c/Chain.) + (1 | Item)
Data: Survival.Analysis_restructureddata
Control: glmerControl(optimizer = "bobyqa", check.conv.grad = .makeCC("warning", 0.002))
AIC BIC logLik deviance df.resid
5795.2 5895.4 -2882.6 5765.2 5873
Scaled residuals:
Min 1Q Median 3Q Max
-7.7595 -0.5744 0.1876 0.5450 5.5047
Random effects:
Groups Name Variance Std.Dev. Corr
Chain.:mood.c (Intercept) 7.550e-01 8.689e-01
Valence.c 1.366e+00 1.169e+00 0.47
Item (Intercept) 1.624e+00 1.274e+00
mood.c (Intercept) 3.708e-18 1.926e-09
Valence.c 7.777e-14 2.789e-07 1.00
Number of obs: 5888, groups: Chain.:mood.c, 92; Item, 16; mood.c, 2
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.43895 0.33331 1.317 0.1879
Posn.c -0.54789 0.03153 -17.378 <2e-16 ***
mood.c -0.23004 0.19436 -1.184 0.2366
Valence.c 1.64397 0.65245 2.520 0.0117 *
Posn.c:mood.c -0.07000 0.06141 -1.140 0.2543
Posn.c:Valence.c 0.06144 0.06301 0.975 0.3295
mood.c:Valence.c -0.05999 0.28123 -0.213 0.8311
Posn.c:mood.c:Valence.c 0.01498 0.12276 0.122 0.9029
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) Posn.c mood.c Vlnc.c Psn.:. Ps.:V. md.:V.
Posn.c -0.009
mood.c -0.001 0.009
Valence.c 0.025 -0.019 -0.002
Posn.c:md.c 0.001 0.007 -0.014 -0.001
Psn.c:Vlnc. -0.018 0.054 -0.002 -0.009 -0.024
md.c:Vlnc.c -0.002 -0.002 0.399 -0.001 -0.065 0.012
Psn.c:m.:V. -0.001 -0.024 -0.046 0.001 0.060 0.007 -0.019
负二项:
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Negative Binomial(5.0188) ( log )
Formula: Loss_across.Chain ~ Posn.c * mood.c * Valence.c + (1 + Valence.c | mood.c/Chain)
Data: FinalData_forpoisson
Control: ..3
AIC BIC logLik deviance df.resid
1901.3 1970.4 -935.7 1871.3 721
Scaled residuals:
Min 1Q Median 3Q Max
-1.3727 -0.7404 -0.5037 0.4609 7.3896
Random effects:
Groups Name Variance Std.Dev. Corr
Chain:mood.c (Intercept) 1.989e-13 4.46e-07
Valence.c 3.589e-13 5.99e-07 1.00
mood.c (Intercept) 0.000e+00 0.00e+00
Valence.c 1.690e-14 1.30e-07 NaN
Number of obs: 736, groups: Chain:mood.c, 92; mood.c, 2
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19375 0.04797 -4.039 5.37e-05 ***
Posn.c -0.61020 0.04124 -14.798 < 2e-16 ***
mood.c 0.04862 0.09597 0.507 0.61242
Valence.c -0.27487 0.09594 -2.865 0.00417 **
Posn.c:mood.c -0.04232 0.08252 -0.513 0.60803
Posn.c:Valence.c 0.38080 0.08247 4.617 3.89e-06 ***
mood.c:Valence.c 0.13272 0.19194 0.691 0.48929
Posn.c:mood.c:Valence.c 0.05143 0.16504 0.312 0.75534
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) Posn.c mood.c Vlnc.c Psn.:. Ps.:V. md.:V.
Posn.c 0.491
mood.c -0.014 0.007
Valence.c 0.030 -0.090 -0.036
Posn.c:md.c 0.007 -0.008 0.492 -0.021
Psn.c:Vlnc. -0.090 0.063 -0.021 0.491 -0.030
md.c:Vlnc.c -0.036 -0.021 0.027 -0.014 -0.091 0.007
Psn.c:m.:V. -0.021 -0.030 -0.091 0.007 0.060 -0.008 0.492