熊猫日期时间格式

时间:2015-09-17 09:55:07

标签: python pandas

是否可以表示后缀为零的pd.to_datetime?似乎零被删除了。

print pd.to_datetime("2000-07-26 14:21:00.00000",
                format="%Y-%m-%d %H:%M:%S.%f")

结果是

2000-07-26 14:21:00

期望的结果是

2000-07-26 14:21:00.00000

我知道这些值意味着相同的东西,但它的一致性会很好。

2 个答案:

答案 0 :(得分:0)

进行一些测试表明,当格式化日期时间数据格式为“%H:%M:%S.%f”时,%f能够达到纳秒分辨率,前提是小数点后的第九位非零。格式化字符串时,根据小数点后面的最低有效位的位置添加可变数量的从零到五的尾随零,并给出它也是最后一位。这是一个来自测试数据的表,其中position是最低有效非零的位置,也是最后一位,零是通过格式化添加的尾随零的数量:

    position zeros
       9      0
       8      1
       7      2
       6      0
       5      1
       4      2
       3      3
       2      4
       1      5

当列的格式为“%H:%M:%S。%f”作为整体时,其所有元素在小数点后的位数都相同,这可以通过添加或删除来完成即使增加或减少原始数据的分辨率,也会尾随零。我猜这个原因是一致性和令人愉悦的美学,而不会引入过多的错误,因为在数值计算中,尾随零通常不会影响立即结果,但是它们会影响对错误的估计以及它们应该如何呈现(Trailing ZerosRules for Significant Figures)。

以下是使用pandas.to_datetime并应用pandas.DataFrame.convert_objects(convert_dates ='coerce)将“%H:%M:%S。%f”格式应用于单个字符串和pandas.Series(DataFrame列)的一些观察结果')到DataFrames,其列可以转换为datetime。

在一个字符串上,一个pandas在时间转换中保留一个非零数字,在时间转换中为“%H:%M:%S.%f”,如果没有提供一个日期,则添加一个日期:

import pandas as pd
pd.to_datetime ("10:00:00.000000001",format="%H:%M:%S.%f")
Out[15]: Timestamp('1900-01-01 10:00:00.000000001')

pd.to_datetime ("2015-09-17 10:00:00.000000001",format="%Y-%m-%d %H:%M:%S.%f")
Out[15]: Timestamp('2015-09-17 10:00:00.000000001')

在此之前,对于最终非零数字是最终数字的测试,在最终非零数字之后,它会增加最多五个尾随零,增加原始数据的分辨率,除非最终非零数字位于小数点右侧的第六位:

pd.to_datetime ("10:00:00.00000001",format="%H:%M:%S.%f")
Out[15]: Timestamp('1900-01-01 10:00:00.000000010')

pd.to_datetime ("2015-09-17 10:00:00.00000001",format="%Y-%m-%d %H:%M:%S.%f")
Out[16]: Timestamp('2015-09-17 10:00:00.000000010')

pd.to_datetime ("10:00:00.0000001",format="%H:%M:%S.%f")
Out[15]: Timestamp('1900-01-01 10:00:00.000000100')

pd.to_datetime ("2015-09-17 10:00:00.0000001",format="%Y-%m-%d %H:%M:%S.%f")
Out[17]: Timestamp('2015-09-17 10:00:00.000000100')

pd.to_datetime ("10:00:00.000001",format="%H:%M:%S.%f")
Out[33]: Timestamp('1900-01-01 10:00:00.000001')

pd.to_datetime ("2015-09-17 10:00:00.000001",format="%Y-%m-%d %H:%M:%S.%f")
Out[18]: Timestamp('2015-09-17 10:00:00.000001')

pd.to_datetime ("10:00:00.00001",format="%H:%M:%S.%f")
Out[6]: Timestamp('1900-01-01 10:00:00.000010')

pd.to_datetime ("2015-09-17 10:00:00.00001",format="%Y-%m-%d %H:%M:%S.%f")
Out[19]: Timestamp('2015-09-17 10:00:00.000010')

pd.to_datetime ("10:00:00.0001",format="%H:%M:%S.%f")
Out[9]: Timestamp('1900-01-01 10:00:00.000100')

pd.to_datetime ("2015-09-17 10:00:00.0001",format="%Y-%m-%d %H:%M:%S.%f")
Out[21]: Timestamp('2015-09-17 10:00:00.000100')

pd.to_datetime ("10:00:00.001",format="%H:%M:%S.%f")
Out[10]: Timestamp('1900-01-01 10:00:00.001000')

pd.to_datetime ("2015-09-17 10:00:00.001",format="%Y-%m-%d %H:%M:%S.%f")
Out[22]: Timestamp('2015-09-17 10:00:00.001000')

pd.to_datetime ("10:00:00.01",format="%H:%M:%S.%f")
Out[12]: Timestamp('1900-01-01 10:00:00.010000')

pd.to_datetime ("2015-09-17 10:00:00.01",format="%Y-%m-%d %H:%M:%S.%f")
Out[24]: Timestamp('2015-09-17 10:00:00.010000'

pd.to_datetime ("10:00:00.1",format="%H:%M:%S.%f")
Out[13]: Timestamp('1900-01-01 10:00:00.100000')

pd.to_datetime ("2015-09-17 10:00:00.1",format="%Y-%m-%d %H:%M:%S.%f")
Out[26]: Timestamp('2015-09-17 10:00:00.100000')

让我们看看它如何与DataFrame一起使用:

!type test.csv # here type is Windows substitute for Linux cat command
date,mesg
10:00:00.000000001,one
10:00:00.00000001,two
10:00:00.0000001,three
10:00:00.000001,four
10:00:00.00001,five
10:00:00.0001,six
10:00:00.001,seven
10:00:00.01,eight
10:00:00.1,nine
10:00:00.000000001,ten
10:00:00.000000002,eleven
10:00:00.000000003,twelve

df = pd.read_csv('test.csv')
df
Out[30]: 
                  date    mesg
0   10:00:00.000000001     one
1    10:00:00.00000001     two
2     10:00:00.0000001   three
3      10:00:00.000001    four
4       10:00:00.00001    five
5        10:00:00.0001     six
6         10:00:00.001   seven
7          10:00:00.01   eight
8           10:00:00.1    nine
9   10:00:00.000000001     ten
10  10:00:00.000000002  eleven
11  10:00:00.000000003  twelve

df.dtypes
Out[31]: 
date    object
mesg    object
dtype: object

使用convert_objects的DataFrame的日期时间转换(没有格式选项)提供微秒分辨率,即使某些原始数据的分辨率低于或大于此值并添加今天的日期:

df2 = df.convert_objects(convert_dates='coerce')
df2
Out[32]: 
                     date    mesg
0  2015-09-17 10:00:00.000000     one
1  2015-09-17 10:00:00.000000     two
2  2015-09-17 10:00:00.000000   three
3  2015-09-17 10:00:00.000001    four
4  2015-09-17 10:00:00.000010    five
5  2015-09-17 10:00:00.000100     six
6  2015-09-17 10:00:00.001000   seven
7  2015-09-17 10:00:00.010000   eight
8  2015-09-17 10:00:00.100000    nine
9  2015-09-17 10:00:00.000000     ten
10 2015-09-17 10:00:00.000000  eleven
11 2015-09-17 10:00:00.000000  twelve

df2.dtypes
Out[33]: 
date    datetime64[ns]
mesg            object
dtype: object

从原始数据创建的DataFrame列中元素值的更高分辨率,其中一些分辨率大于微秒,在没有显式格式的日期时间转换完成后,“%H:%M:%S.%f”格式无法恢复说明符(即DataFrame.convert_objects):

df2['date'] = pd.to_datetime(df2['date'],format="%H:%M:%S.%f")
df2
Out[34]: 
                         date    mesg
0  2015-09-17 10:00:00.000000     one
1  2015-09-17 10:00:00.000000     two
2  2015-09-17 10:00:00.000000   three
3  2015-09-17 10:00:00.000001    four
4  2015-09-17 10:00:00.000010    five
5  2015-09-17 10:00:00.000100     six
6  2015-09-17 10:00:00.001000   seven
7  2015-09-17 10:00:00.010000   eight
8  2015-09-17 10:00:00.100000    nine
9  2015-09-17 10:00:00.000000     ten
10 2015-09-17 10:00:00.000000  eleven
11 2015-09-17 10:00:00.000000  twelve

如果至少有一个元素在第九位有一个非零数字,则在日期时间转换之前使用“%H:%M:%S.%f”格式化DataFrame colume可提供纳秒分辨率(如{{3}中所宣称的那样) }),但也将原始数据的分辨率提高到该级别的分辨率小于纳秒,并添加1900-01-01作为日期:

df3 = df.copy(deep=True)
df3['date'] = pd.to_datetime(df3['date'],format="%H:%M:%S.%f",coerce=True)
df3
Out[35]:
                            date    mesg
0  1900-01-01 10:00:00.000000001     one
1  1900-01-01 10:00:00.000000010     two
2  1900-01-01 10:00:00.000000100   three
3  1900-01-01 10:00:00.000001000    four
4  1900-01-01 10:00:00.000010000    five
5  1900-01-01 10:00:00.000100000     six
6  1900-01-01 10:00:00.001000000   seven
7  1900-01-01 10:00:00.010000000   eight
8  1900-01-01 10:00:00.100000000    nine
9  1900-01-01 10:00:00.000000001     ten
10 1900-01-01 10:00:00.000000002  eleven
11 1900-01-01 10:00:00.000000003  twelve

使用“%H:%M:%S。%f”格式化DataFrame列在数据后添加零,小数点后面的最小有效非零数字(在整个列上添加零,并根据位置添加零) :上面的零表)并将所有其他数据的分辨率与其对齐,即使这样做会增加或减少某些原始数据的分辨率:

df4 = pd.read_csv('test2.csv')
df4
Out[36]: 
                  date    mesg
0   10:00:00.000000000     one
1    10:00:00.00000000     two
2     10:00:00.0000000   three
3      10:00:00.000000    four
4       10:00:00.00000    five
5        10:00:00.0001     six
6          10:00:00.00   seven
7           10:00:00.0   eight
8            10:00:00.    nine
9   10:00:00.000000000     ten
10  10:00:00.000000000  eleven
11   10:00:00.00000000  twelve

df4['date'] = pd.to_datetime(df4['date'],format="%H:%M:%S.%f",coerce=True)
df4
Out[37]: 
                         date    mesg
0  1900-01-01 10:00:00.000000     one
1  1900-01-01 10:00:00.000000     two
2  1900-01-01 10:00:00.000000   three
3  1900-01-01 10:00:00.000000    four
4  1900-01-01 10:00:00.000000    five
5  1900-01-01 10:00:00.000100     six
6  1900-01-01 10:00:00.000000   seven
7  1900-01-01 10:00:00.000000   eight
8                         NaT    nine # nothing after decimal point in raw data
9  1900-01-01 10:00:00.000000     ten
10 1900-01-01 10:00:00.000000  eleven
11 1900-01-01 10:00:00.000000  twelve

使用相同的DataFrame尝试使用但日期列中包含日期时,同样的事情发生了:

df25
Out[38]: 
                             date    mesg
0   2015-09-10 10:00:00.000000000     one
1    2015-09-11 10:00:00.00000000     two
2     2015-09-12 10:00:00.0000000   three
3      2015-09-13 10:00:00.000000    four
4       2015-09-14 10:00:00.00000    five
5        2015-09-15 10:00:00.0001     six
6          2015-09-16 10:00:00.00   seven
7           2015-09-17 10:00:00.0   eight
8            2015-09-18 10:00:00.    nine
9   2015-09-19 10:00:00.000000000     ten
10  2015-09-20 10:00:00.000000000  eleven
11   2015-09-21 10:00:00.00000000  twelve

df25['date'] = pd.to_datetime(df25['date'],format="%Y-%m-%d %H:%M:%S.%f",coerce=True)
df25
Out[39]: 
                         date    mesg
0  2015-09-10 10:00:00.000000     one
1  2015-09-11 10:00:00.000000     two
2  2015-09-12 10:00:00.000000   three
3  2015-09-13 10:00:00.000000    four
4  2015-09-14 10:00:00.000000    five
5  2015-09-15 10:00:00.000100     six
6  2015-09-16 10:00:00.000000   seven
7  2015-09-17 10:00:00.000000   eight
8                         NaT    nine # nothing after decimal point in raw data
9  2015-09-19 10:00:00.000000     ten
10 2015-09-20 10:00:00.000000  eleven
11 2015-09-21 10:00:00.000000  twelve

当原始数据在小数点后没有非零有效数字时,使用DataFrame列“%H:%M:%S.%f”进行格式化可以在小数点后面统一提供所有的小数点后的两个零即使增加或减少某些原始数据的分辨率,数据也是如此:

df5 = pd.read_csv('test3.csv')
df5
Out[40]: 
                  date    mesg
0         10:00:00.000     one
1           10:00:00.0     two
2         10:00:00.000   three
3         10:00:00.000    four
4          10:00:00.00    five
5         10:00:00.000     six
6          10:00:00.00   seven
7           10:00:00.0   eight
8           10:00:00.0    nine
9   10:00:00.000000000     ten
10        10:00:00.000  eleven
11        10:00:00.000  twelve

df5['date'] = pd.to_datetime(df5['date'],format="%H:%M:%S.%f",coerce=True)
df5
Out[41]: 
                  date    mesg
0  1900-01-01 10:00:00     one
1  1900-01-01 10:00:00     two
2  1900-01-01 10:00:00   three
3  1900-01-01 10:00:00    four
4  1900-01-01 10:00:00    five
5  1900-01-01 10:00:00     six
6  1900-01-01 10:00:00   seven
7  1900-01-01 10:00:00   eight
8  1900-01-01 10:00:00    nine
9  1900-01-01 10:00:00     ten
10 1900-01-01 10:00:00  eleven
11 1900-01-01 10:00:00  twelve

使用相同的DataFrame进行此测试时发生了同样的事情,但日期列中包含日期:

df45
Out[42]: 
                             date    mesg
0         2015-09-10 10:00:00.000     one
1           2015-09-11 10:00:00.0     two
2         2015-09-12 10:00:00.000   three
3         2015-09-13 10:00:00.000    four
4          2015-09-14 10:00:00.00    five
5         2015-09-15 10:00:00.000     six
6          2015-09-16 10:00:00.00   seven
7           2015-09-17 10:00:00.0   eight
8           2015-09-18 10:00:00.0    nine
9   2015-09-19 10:00:00.000000000     ten
10        2015-09-20 10:00:00.000  eleven
11        2015-09-21 10:00:00.000  twelve

df45['date'] = pd.to_datetime(df45['date'],format="%Y-%m-%d %H:%M:    %S.%f",coerce=True)
df45
Out[43]: 
                  date    mesg
0  2015-09-10 10:00:00     one
1  2015-09-11 10:00:00     two
2  2015-09-12 10:00:00   three
3  2015-09-13 10:00:00    four
4  2015-09-14 10:00:00    five
5  2015-09-15 10:00:00     six
6  2015-09-16 10:00:00   seven
7  2015-09-17 10:00:00   eight
8  2015-09-18 10:00:00    nine
9  2015-09-19 10:00:00     ten
10 2015-09-20 10:00:00  eleven
11 2015-09-21 10:00:00  twelve

答案 1 :(得分:0)

很抱歉没有足够的评论,所以我会在这里尝试我的答案。完全同意EdChum,这是一个显示问题。如果您尝试:

pd.to_datetime ("10:00:00.00001",format="%H:%M:%S.%f")

回应应该是:

时间戳('1900-01-01 10:00:00.000010')