我有这张图:
%matplotlib inline
import networkx as nx
G = nx.Graph()
G.add_edge(1, 2)
G.add_edge(2, 3)
G.add_edge(3, 4)
G.add_edge(3, 5)
G.add_edge(4, 6)
G.add_edge(5, 6)
G.add_edge(3, 7)
G.add_edge(7, 6)
G.add_edge(6, 8)
G.add_edge(8, 9)
nx.draw(G, pos=nx.spring_layout(G), with_labels=True)
是否可以在不使用nx.subgraph(G, [3,4,5,6,7])
的情况下获取节点3和6之间的子图。我的意思是,如果我知道有这个子图怎么办,但我不知道,例如关于5?
答案 0 :(得分:1)
我的回答与back2basics非常相似,但更直接地找到了两者之间的节点。如果存在从source
到target
的路径,nx.all_simple_paths(G, source=source, target=target)
将找到该路径,该路径将返回路径的生成器。
import networkx as nx
G = nx.Graph()
G.add_edges_from([(1, 2), (2, 3), (3, 4), (3, 5), (4, 6), (5, 6), (3, 7), (7, 6), (6, 8), (8, 9)])
paths_between_generator = nx.all_simple_paths(G,source=3,target=6)
nodes_between_set = {node for path in paths_between_generator for node in path}
SG = G.subgraph(nodes_between_set)
nodes_between_set = ...
使用“set generator”。它相当于
nodes_between_set = set()
for path in paths_beween_generator:
for node in path:
nodes_between_set.add(node)
答案 1 :(得分:0)
前三行帮助制作了制作子集所需的列表。
var serviceBase = 'http://baseDomain/';
var plupload = null;
$scope.uploadedFiles = [];
$scope.fileUpload = {
url: serviceBase + 'ImageUploadHandler.ashx',
options: {
multi_selection: true,
drop_element: "pluploadDropzone",
chunk_size: '200kb',
runtimes: 'html5,flash,silverlight,html4',
browse_button: "pluploadDropzone",
container: "pluploadContainer",
max_file_size: '3mb',
mime_types: [{ title: 'Allowed', extensions: 'jpeg, jpg, png, gif' }]
},
callbacks:
{
filesAdded: function (uploader, files) {
plupload = uploader;
for (var i = 0 ; i < files.length ; i++) {
var file = files[i];
$scope.uploadedFiles.push(file);
plupload.start();
}
}
}
}
一个警告:子图点被定义为在从第3点到第6点的路径中
答案 2 :(得分:0)
这是基于
的原则所以,首先我们找到我们可以达到的节点子图,然后递归删除没有至少一个前任和一个后继的节点,直到只有现有的子图。
import networkx as nx
def subgraph_from_connections(G, source, target, directed = None):
included_nodes = [x for x in G.node if nx.has_path(G, source, x) and nx.has_path(G, x, target)]
G2 = G.subgraph(included_nodes)
# If this is a undirected graph, we only need to know if it only has 1 neighbor
# If this is a directed graph, then it needs at least 1 predecessor and at least 1 successor
if directed == True or (directed is None and type(G) == nx.classes.digraph.DiGraph):
removals = [x for x in G2.node if len(G2.predecessors(x)) == 0 or len(G2.successors(x)) == 0]
while len(removals) > 0:
G2.remove_nodes_from(removals)
removals = [x for x in G.node if len(G2.predecessors(x)) == 0 or len(G2.successors(x)) == 0]
else:
removals = [x for x in G2.node if len(G2.neighbors(x)) < 2]
while len(removals) > 0:
G2.remove_nodes_from(removals)
removals = [x for x in G2.node if len(G2.neighbors(x)) < 2]
return G2
没有经过广泛测试,但它适用于此处列出的少数案例,并且包含10/11,当时这些案件都包含在Joel的测试中。该算法足够快 - 从之前的1000/10节点随机测试130毫秒(也许我不应该删除它)。