用于计算空间弧的边界坐标的公式

时间:2015-09-03 01:07:33

标签: math formula

我有两条线在一个知道坐标的点相交   - x1,y1   - x2,y2   - x3,y3

由此我计算了线之间给定半径的弧。所以我现在知道了   - 2个弧端点x4,y4和x5,y5   - arc centrepoint Cx,Cy   - 圆弧半径r   - 极性中相对于X轴的起始和终止角度,以及线之间的角度。

bounding coordinates of an arc in space

我想创建一个公式来计算弧的最大和最小X和Y值。即包围弧的框的坐标。

在下面的示例中,我可以找出最小X值和最大Y值,它们是已知值,但不确定如何计算最大X和最小Y.

在其他情况下,弧可以是任何坐标,因此已知的最小值和最大值将发生变化。

我知道如何沿给定角度或间隔计算圆弧,但不知道特定方向的最大值和最小值,在本例中为X轴和Y轴。

我将在编程中使用该公式。

5 个答案:

答案 0 :(得分:1)

首先找到端点所在的象限。

如果它们在同一象限中,则弧线是单调的,边界框很容易。

否则,每次越过象限时,您都会得到一个极值点,即水平或垂直直径的终点。

为此编写算法并不复杂,尽管可能需要考虑几种情况,包括弧的方向。

答案 1 :(得分:1)

我有一个可以尝试使用的算法解决方案。它涉及扫描弧上已知起点和终点之间的极坐标空间,并跟踪最小值和最大值。

以下是算法的基本步骤:

  • 将弧上的两个输入(笛卡尔)点转换为极坐标
  • 以极坐标
  • 逆时针走弧
  • 在每一步,转换回笛卡尔坐标并检查最小值/最大值

我利用以下两个方程将极坐标转换为Cartedian坐标:

x = r*cosθ
y = r*sinθ

这是将笛卡尔坐标转换为极角的公式:

θ = tan-1(y / x)

您需要注意此等式中的潜在除以零。无穷远的反正切是Pi / 2弧度。

此解决方案假设弧开始并从低弧度值逆向移动到高弧度值。

// Input Parameters:
// (x1, y1) first point on arc
// (x2, y2) second point on arc
// (xc, yc) center point of circle

public void findMinMax(double x1, double x2, double y1, double y2, double xc, double yc) {
    double xMin, yMin, xMax, yMax;
    // compute radius of circle
    double radius = Math.sqrt(Math.pow((xc - x1), 2) + Math.pow((yc - y1), 2));

    // compute starting and ending points in polar coordinates
    double t1 = 0.0;
    if (x1 == 0.0) {
        t1 = Math.PI / 2;
    }
    else {
        t1 = Math.atan(y1 / x1);
    }

    double t2 = 0.0;
    if (x2 == 0.0) {
        t2 = Math.PI / 2;
    }
    else {
        t2 = Math.atan(y2 / x2);
    }

    // determine starting and ending polar angles
    double tStart, tEnd;
    if (t1 < t2) {
        tStart = t1;
        tEnd = t2;
    }
    else {
        tStart = t2;
        tEnd = t1;
    }

    // now scan the polar space at fixed radius and find
    // the minimum AND maximum Cartesian x and y values
    double delta = 0.01;

    // initialize min and max coordinates to first point
    xMin = radius * Math.cos(tStart);
    yMin = radius * Math.sin(tStart);
    xMax = xMin;
    yMax = yMin;

    for (double theta=tStart; theta < tEnd; theta += delta) {
        // compute coordinates
        double x = radius * Math.cos(theta);
        double y = radius * Math.sin(theta);

        if (x > xMax) {
            xMax = x;
        }
        if (x < xMin) {
            xMin = x;
        }
        if (y > yMax) {
            yMax = y;
        }
        if (y < yMin) {
            yMin = y;
        }
    }

    // display min and max values
    System.out.println("xMin = " + xMin + ", yMin = " + yMin);
    System.out.println("xMax = " + xMax + ", yMax = " + yMax);
}

<强>测试

Arc starting at (5, 0) and ending at (0, 5) with center point (0, 0)
findMinMax(5, 0, 0, 5, 0, 0)
xMin = 0.003981633553660766, yMin = 0.0
xMax = 5.0, yMax = 4.999998414659173

答案 2 :(得分:1)

假设我们有起始角θ1,结束角θ2(均以弧度表示),radus r ,弧的方向逆时针即可。我们希望找到 Xmax Ymax Xmin Ymin 。将此值视为象限q = f(θ)的函数:

Xmax = f(q1,q2,r),Ymax = f(q1,q2,r),Xmin = f(q1,q2,r),Ymin = f(q1,q2,r)。

不是编写大量的“if”语句,而是将这些函数表示为“极值矩阵”很方便。评估函数f(q1,q2,r)我们最终得到this matrices

所以这是算法:

  1. 查找θ1θ2的象限( q1 q2 );
  2. θ1θ2 r 转换为笛卡尔坐标;
  3. 查找不包括极值点的边界框;
  4. 构建极值矩阵;
  5. 根据 q1 选择 Xmax Ymax Xmin Ymin 来自这个矩阵的 q2
  6. 这是我的C#6实现:

    using System;
    using System.Windows;
    using static System.Math;
    
    public static class GeomTools
    {
        public static Byte GetQuadrant(this Double angle)
        {
            var trueAngle = angle%(2*PI);
            if (trueAngle >= 0.0 && trueAngle < PI/2.0)
                return 1;
            if (trueAngle >= PI/2.0 && trueAngle < PI)
                return 2;
            if (trueAngle >= PI && trueAngle < PI*3.0/2.0)
                return 3;
            if (trueAngle >= PI*3.0/2.0 && trueAngle < PI*2)
                return 4;
            return 0;
        }
        public static Rect GetBounds(Double startAngle, Double endAngle, Double r)
        {
            var startQuad = startAngle.GetQuadrant() - 1;
            var endQuad = endAngle.GetQuadrant() - 1;
    
            // Convert to Cartesian coordinates.
            var stPt = new Point(Round(r*Cos(startAngle), 14), Round(r*Sin(startAngle), 14));
            var enPt = new Point(Round(r*Cos(endAngle), 14), Round(r*Sin(endAngle), 14));
    
            // Find bounding box excluding extremum.
            var minX = stPt.X;
            var minY = stPt.Y;
            var maxX = stPt.X;
            var maxY = stPt.Y;
            if (maxX < enPt.X) maxX = enPt.X;
            if (maxY < enPt.Y) maxY = enPt.Y;
            if (minX > enPt.X) minX = enPt.X;
            if (minY > enPt.Y) minY = enPt.Y;
    
            // Build extremum matrices.
            var xMax = new[,] {{maxX, r, r, r}, {maxX, maxX, r, r}, {maxX, maxX, maxX, r}, {maxX, maxX, maxX, maxX}};
            var yMax = new[,] {{maxY, maxY, maxY, maxY}, {r, maxY, r, r}, {r, maxY, maxY, r}, {r, maxY, maxY, maxY}};
            var xMin = new[,] {{minX, -r, minX, minX}, {minX, minX, minX, minX}, {-r, -r, minX, -r}, {-r, -r, minX, minX}};
            var yMin = new[,] {{minY, -r, -r, minY}, {minY, minY, -r, minY}, {minY, minY, minY, minY}, {-r, -r, -r, minY}};
    
            // Select desired values
            var startPt =new Point(xMin[endQuad, startQuad], yMin[endQuad, startQuad]);
            var endPt=new Point(xMax[endQuad, startQuad], yMax[endQuad, startQuad]);
            return new Rect(startPt,endPt);
        }
    }
    

    对于(0,0)处的圆弧中心点是公平的,但是您可以轻松地将结果边界框移动到您的Cx,Cy。

    Tim Buegeleisen的近似解决方案不同,这个解决方案是准确的,尽管它的内存可能要贵一些。

答案 3 :(得分:0)

Oleg Petrochenko的答案用Java语言实现:

const PI = Math.PI;
const HALF_PI = Math.PI / 2;
const TWO_PI = Math.PI * 2;
const DEG_TO_RAD = Math.PI / 180;
const RAD_TO_DEG = 180 / Math.PI;

const getQuadrant = (_angle) => {
    const angle = _angle % (TWO_PI);

    if (angle > 0.0 && angle < HALF_PI) return 0;
    if (angle >= HALF_PI && angle < PI) return 1;
    if (angle >= PI && angle < PI + HALF_PI) return 2;
    return 3;
};

const getArcBoundingBox = (ini, end, radius, margin = 0) => {
    const iniQuad = getQuadrant(ini);
    const endQuad = getQuadrant(end);

    const ix = Math.cos(ini) * radius;
    const iy = Math.sin(ini) * radius;
    const ex = Math.cos(end) * radius;
    const ey = Math.sin(end) * radius;

    const minX = Math.min(ix, ex);
    const minY = Math.min(iy, ey);
    const maxX = Math.max(ix, ex);
    const maxY = Math.max(iy, ey);

    const r = radius;
    const xMax = [[maxX, r, r, r], [maxX, maxX, r, r], [maxX, maxX, maxX, r], [maxX, maxX, maxX, maxX]];
    const yMax = [[maxY, maxY, maxY, maxY], [r, maxY, r, r], [r, maxY, maxY, r], [r, maxY, maxY, maxY]];
    const xMin = [[minX, -r, minX, minX], [minX, minX, minX, minX], [-r, -r, minX, -r], [-r, -r, minX, minX]];
    const yMin = [[minY, -r, -r, minY], [minY, minY, -r, minY], [minY, minY, minY, minY], [-r, -r, -r, minY]];

    const x1 = xMin[endQuad][iniQuad];
    const y1 = yMin[endQuad][iniQuad];
    const x2 = xMax[endQuad][iniQuad];
    const y2 = yMax[endQuad][iniQuad];

    const x = x1 - margin;
    const y = y1 - margin;
    const w = x2 - x1 + margin * 2;
    const h = y2 - y1 + margin * 2;

    return { x, y, w, h };
};

这是一个jsfiddle:https://jsfiddle.net/brunoimbrizi/y3to5s6n/45/

答案 4 :(得分:0)

添加其他解决方案;我将https://groups.google.com/g/comp.graphics.algorithms/c/GtvMc05E0CQ/m/duaoXIWaqJIJ中的想法实现为以下示例:

  • 角度为度,从“ 3点”开始顺时针旋转
  • 0,0在圆心
  • 轴+ ve向右下角
  • startAngle === endAngle上,如果圆弧是整个圆还是什么都不是模棱两可的,则默认情况下该方法返回整个圆的边界框。

const svg = d3
  .select("section")
  .append("svg")
  .attr('width', 200)
  .attr('height', 200)
  .append('g')
  .attr('transform', d3.zoomIdentity.translate(100, 100).toString());

const pathShape = d3
  .arc()
  .startAngle(datum => degToRad(datum.startAngle))
  .endAngle(datum => degToRad(datum.endAngle))
  .innerRadius(datum => datum.radius)
  .outerRadius(datum => datum.radius);

function mod(
  n,
  m
) {
  return ((n % m) + m) % m;
}

function degToRad(
  degree
) {
  return degree * Math.PI / 180;
}

function reDraw() {
  const radius = 100;

  const startAngleInput = parseInt($('#start-angle').val());
  const endAngleInput = parseInt($('#end-angle').val());

  $('[data-field=start-angle]').text(startAngleInput);
  $('[data-field=end-angle]').text(endAngleInput);

  const startAngle = Math.min(startAngleInput, endAngleInput);
  const endAngle = Math.max(startAngleInput, endAngleInput);

  const cross0 = mod(startAngle, 360) >= mod(endAngle, 360);
  const cross90 = mod(startAngle - 90, 360) >= mod(endAngle - 90, 360);
  const cross180 = mod(startAngle - 180, 360) >= mod(endAngle - 180, 360);
  const cross270 = mod(startAngle - 270, 360) >= mod(endAngle - 270, 360);

  $('[data-field=cross-0]').text(cross0);
  $('[data-field=cross-90]').text(cross90);
  $('[data-field=cross-180]').text(cross180);
  $('[data-field=cross-270]').text(cross270);

  const startX = radius * Math.cos(degToRad(startAngle));
  const startY = radius * Math.sin(degToRad(startAngle));
  const endX = radius * Math.cos(degToRad(endAngle));
  const endY = radius * Math.sin(degToRad(endAngle));

  const right = cross0 ? +radius : Math.max(startX, endX);
  const bottom = cross90 ? +radius : Math.max(startY, endY);
  const left = cross180 ? -radius : Math.min(startX, endX);
  const top = cross270 ? -radius : Math.min(startY, endY);

  $('[data-field=right]').text(right.toFixed(2));
  $('[data-field=top]').text(top.toFixed(2));
  $('[data-field=left]').text(left.toFixed(2));
  $('[data-field=bottom]').text(bottom.toFixed(2));

  const pathSelectAll = svg
    .selectAll('path')
    .data([{
      // input angles start at 3 o'clock
      // SVG angle starts at 12 o'clock 
      startAngle: startAngle + 90,
      endAngle: endAngle + 90,
      radius: radius,
    }]);

  const pathEnter = pathSelectAll
    .enter()
    .append('path')
    .attr('fill', 'none')
    .attr('stroke', 'black');

  pathSelectAll
    .merge(pathEnter)
    .attr('d', datum => pathShape(datum));

  const circleSelectAll = svg
    .selectAll('circle')
    .data([{
      cx: startX,
      cy: startY,
    }, {
      cx: endX,
      cy: endY,
    }]);

  const circleEnter = circleSelectAll
    .enter()
    .append('circle')
    .attr('fill', 'none')
    .attr('stroke', 'blue');

  circleSelectAll
    .merge(circleEnter)
    .attr('r', 10)
    .attr('cx', datum => datum.cx)
    .attr('cy', datum => datum.cy);


  const rectSelectAll = svg
    .selectAll('rect')
    .data([{
      right: right,
      top: top,
      left: left,
      bottom: bottom,
    }]);

  const rectEnter = rectSelectAll
    .enter()
    .append('rect')
    .attr('fill', 'none')
    .attr('stroke', 'red');

  rectSelectAll
    .merge(rectEnter)
    .attr('x', datum => datum.left)
    .attr('y', datum => datum.top)
    .attr('width', datum => Math.abs(datum.left - datum.right))
    .attr('height', datum => Math.abs(datum.top - datum.bottom));
}

reDraw();

$(document).on('input', '#start-angle', reDraw);
$(document).on('input', '#end-angle', reDraw);
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.16.0/d3.js" integrity="sha512-F63QPFxQ27mn9COmkZhSirC1pBNeVJ7MJJs4wtK6XfiAaH3WM1SfX6Sv2Pme/499+hafP0dALVZOADw4W2r6eQ==" crossorigin="anonymous"></script>

<table>
  <tbody>
    <tr>
      <th>
        <label for="start-angle">Start Angle</label>
        <input id="start-angle" type="range" min="0" max="360" value="10" step="1">
      </th>
      <td data-field="start-angle"></td>
    </tr>
    <tr>
      <th>
        <label for="end-angle">End Angle</label>
        <input id="end-angle" type="range" min="0" max="360" value="200" step="1">
      </th>
      <td data-field="end-angle"></td>
    </tr>
  </tbody>
</table>

<section></section>

<table>
  <tbody>
    <tr>
      <th>Cross 0?</th>
      <td data-field="cross-0"></td>
    </tr>
    <tr>
      <th>Cross 90?</th>
      <td data-field="cross-90"></td>
    </tr>
    <tr>
      <th>Cross 180?</th>
      <td data-field="cross-180"></td>
    </tr>
    <tr>
      <th>Cross 270?</th>
      <td data-field="cross-270"></td>
    </tr>
    <tr>
      <th>Right</th>
      <td data-field="right"></td>
    </tr>
    <tr>
      <th>Top</th>
      <td data-field="top"></td>
    </tr>
    <tr>
      <th>Left</th>
      <td data-field="left"></td>
    </tr>
    <tr>
      <th>Bottom</th>
      <td data-field="bottom"></td>
    </tr>
  </tbody>
</table>


我知道这很旧,但是当前的accepted answer确实效率低下,甚至不准确,它只是通过沿弧线尝试一堆点来强行解决问题...

imbrizi's JavaScript实现似乎在 某些要点,例如:

Failure of bounding box