我试图在Fabric中创建一根绳子。当它是一根直绳时,一切都很好,但如果我让它弯曲一点,就会变成这样的
http://i.stack.imgur.com/EZeSb.png
当我的绳子弯曲时,我失去了一部分绳索。
所以我试着将它分成多个小矩形,并将模式添加到所有这些,但它看起来不自然,所有矩形都在凌乱的坐标系中。
那么无论如何都要创建一条普通的曲线绳索?谢谢!
答案 0 :(得分:1)
是的,你可以,但它非常复杂,曲线必须相对“温和”(没有急转弯)。
您在问题中使用的曲线可以正常工作。
您必须在原生html5画布上绘制弯曲的绳索,然后在FabricJS上显示该原生画布。
请参阅此链接,了解如何在曲线上绘制渐变:
Gradient Stroke Along Curve in Canvas。
然后沿曲线而不是渐变逐渐绘制绳索图像:
您可以使用转换完成#3:
context.translate(curveX,curveY)
context.rotate(tangentAngle).
使用剪切版本drawImage
:
drawImage(ropeImg,sliceX,0,1,ropeImg.height,0,0,1,ropeImg.height);
通过撤消转换进行清理:context.setTransform(1,0,0,1,0,0);
此时,您在原生html5画布上有一条弯曲的绳索。
使用nativeCanvas.toDataURL()
作为图像源创建新的FabricJS图像。
示例代码和演示
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;
// variables defining a cubic bezier curve
var PI2=Math.PI*2;
var s={x:20,y:50};
var c1={x:200,y:70};
var c2={x:40,y:230};
var e={x:270,y:250};
// an array of points plotted along the bezier curve
var points=[];
// we use PI often so put it in a variable
var PI=Math.PI;
// plot 400 points along the curve
// and also calculate the angle of the curve at that point
// NOTE: You may need to adjust the point count (==100 here)
// if the curve is much shorter or longer than this demo's curve
for(var t=0;t<=100;t+=0.25){
var T=t/100;
// plot a point on the curve
var pos=getCubicBezierXYatT(s,c1,c2,e,T);
// calculate the tangent angle of the curve at that point
var tx = bezierTangent(s.x,c1.x,c2.x,e.x,T);
var ty = bezierTangent(s.y,c1.y,c2.y,e.y,T);
var a = Math.atan2(ty, tx)-PI/2;
// save the x/y position of the point and the tangent angle
// in the points array
points.push({
x:pos.x,
y:pos.y,
angle:a
});
}
var img=new Image();
img.onload=function(){
slicer();
};
img.src='https://dl.dropboxusercontent.com/u/139992952/multple/rope.png';
function slicer(){
// Note: increase the lineWidth if
// the gradient has noticable gaps
ctx.lineWidth=2;
ctx.strokeStyle='skyblue';
var sliceCount=0;
// draw a gradient-stroked line tangent to each point on the curve
for(var i=0;i<points.length;i++){
var p=points[i];
ctx.translate(p.x,p.y);
ctx.rotate(p.angle-PI/2);
// draw multiple times to fill gaps on outside of rope slices
ctx.drawImage(img,sliceCount,0,1,img.height,0,0,1,img.height);
ctx.drawImage(img,sliceCount,0,1,img.height,0,0,1,img.height);
ctx.drawImage(img,sliceCount,0,1,img.height,0,0,1,img.height);
ctx.setTransform(1,0,0,1,0,0);
++sliceCount;
if(sliceCount>(img.width-1)){sliceCount=0;}
}
}
//////////////////////////////////////////
// helper functions
//////////////////////////////////////////
// calculate one XY point along Cubic Bezier at interval T
// (where T==0.00 at the start of the curve and T==1.00 at the end)
function getCubicBezierXYatT(startPt,controlPt1,controlPt2,endPt,T){
var x=CubicN(T,startPt.x,controlPt1.x,controlPt2.x,endPt.x);
var y=CubicN(T,startPt.y,controlPt1.y,controlPt2.y,endPt.y);
return({x:x,y:y});
}
// cubic helper formula at T distance
function CubicN(T, a,b,c,d) {
var t2 = T * T;
var t3 = t2 * T;
return a + (-a * 3 + T * (3 * a - a * T)) * T
+ (3 * b + T * (-6 * b + b * 3 * T)) * T
+ (c * 3 - c * 3 * T) * t2
+ d * t3;
}
// calculate the tangent angle at interval T on the curve
function bezierTangent(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};
body{ background-color: ivory; }
#canvas{border:1px solid red; margin:0 auto; }
<h4>Source horizontal rope image</h4>
<img src='https://dl.dropboxusercontent.com/u/139992952/multple/rope.png'>
<h4>After slicing rope and drawing it along curve</h4>
<canvas id="canvas" width=300 height=300></canvas>