Kruskal - 用于R

时间:2015-08-28 23:44:20

标签: r p-value statistical-test kruskal-wallis

考虑一个数据集Data,它有几个因子和几个数值连续变量。其中一些变量,比方说slice_by_1(类“男”,“女”)和slice_by_2(类“悲伤”,“中性”,“快乐”),用于'切片'数据到子集。对于每个子集,Kruskal-Wallis测试应该在变量lengthpreasurepulse上运行,每个变量都由另一个名为compare_by的因子变量分组。 R中是否有快速方法来完成此任务并将计算出的p值放入矩阵?

我使用dplyr包来准备数据。

示例数据集:

library(dplyr)
set.seed(123)
Data <- tbl_df(
   data.frame(
       slice_by_1 = as.factor(rep(c("Male", "Female"), times = 120)),
       slice_by_2 = as.factor(rep(c("Happy", "Neutral", "Sad"), each = 80)),
       compare_by = as.factor(rep(c("blue", "green", "brown"), times = 80)),
       length   = c(sample(1:10, 120, replace=T), sample(5:12, 120, replace=T)),
       pulse    = runif(240, 60, 120),
       preasure = c(rnorm(80,1,2),rnorm(80,1,2.1),rnorm(80,1,3))
   )
   ) %>%
group_by(slice_by_1, slice_by_2)

让我们看一下数据:

Source: local data frame [240 x 6]
Groups: slice_by_1, slice_by_2

   slice_by_1 slice_by_2 compare_by length     pulse     preasure
1        Male      Happy       blue     10  69.23376  0.508694601
2      Female      Happy      green      1  68.57866 -1.155632020
3        Male      Happy      brown      8 112.72132  0.007031799
4      Female      Happy       blue      3 116.61283  0.383769524
5        Male      Happy      green      7 110.06851 -0.717791526
6      Female      Happy      brown      8 117.62481  2.938658488
7        Male      Happy       blue      9 105.59749  0.735831389
8      Female      Happy      green      2  83.44101  3.881268679
9        Male      Happy      brown      5 101.48334  0.025572561
10     Female      Happy       blue     10  62.87331 -0.715108893
..        ...        ...        ...    ...       ...          ...

所需输出的示例:

    Data_subsets    length  preasure     pulse
1     Male_Happy <p-value> <p-value> <p-value>
2   Female_Happy <p-value> <p-value> <p-value>
3   Male_Neutral <p-value> <p-value> <p-value>
4 Female_Neutral <p-value> <p-value> <p-value>
5       Male_Sad <p-value> <p-value> <p-value>
6     Female_Sad <p-value> <p-value> <p-value>

2 个答案:

答案 0 :(得分:3)

您的大部分内容都来自java.lang,现在您只需要group_by

do

您必须执行Data %>% do({ data.frame( Data_subsets=paste(.$slice_by_1[[1]], .$slice_by_2[[1]], sep='_'), length=kruskal.test(.$length, .$compare_by)$p.value, preasure=kruskal.test(.$preasure, .$compare_by)$p.value, pulse=kruskal.test(.$pulse, .$compare_by)$p.value, stringsAsFactors=FALSE) }) %>% ungroup() %>% select(-starts_with("slice_")) ## Source: local data frame [6 x 4] ## Data_subsets length preasure pulse ## 1 Female_Happy 0.4369918 0.1937327 0.8767561 ## 2 Female_Neutral 0.3750688 0.8588069 0.2858796 ## 3 Female_Sad 0.7958502 0.6274940 0.5801208 ## 4 Male_Happy 0.3099704 0.6929493 0.3796494 ## 5 Male_Neutral 0.4953853 0.2986860 0.2418708 ## 6 Male_Sad 0.7159970 0.8528201 0.5686672 删除ungroup()列,因为slice*列未被删除(我想说“永不丢弃”,但我不是某些)。

答案 1 :(得分:2)

我们可以在Map中使用do来执行多列kruskal.test,然后使用unite中的library(tidyr)加入&#39; slice_by_1&# 39;和&#39; slice_by_2&#39;列到单个列&#39; Data_subsets&#39;。

library(dplyr)
library(tidyr)
nm1 <- names(Data)[4:6]
f1 <- function(x,y) kruskal.test(x~y)$p.value

Data %>% 
     do({data.frame(Map(f1, .[nm1], list(.$compare_by)))}) %>% 
     unite(Data_subsets, slice_by_1, slice_by_2, sep="_")
#     Data_subsets    length     pulse  preasure
#1   Female_Happy 0.4369918 0.8767561 0.1937327
#2 Female_Neutral 0.3750688 0.2858796 0.8588069
#3     Female_Sad 0.7958502 0.5801208 0.6274940
#4     Male_Happy 0.3099704 0.3796494 0.6929493
#5   Male_Neutral 0.4953853 0.2418708 0.2986860
#6       Male_Sad 0.7159970 0.5686672 0.8528201

或者我们可以使用data.table执行此操作。我们转换了&#39; data.frame&#39;到&#39; data.table&#39; (setDT(Data)),通过paste&lt; slice_by_1&#39;创建分组变量(&#39; Data_subsets&#39;)和&#39; slice_by_2&#39;列,然后我们将数据集的列子集化并将其作为输入传递给Map,执行krusal.test并提取p.value

library(data.table)    
setDT(Data)[, Map(f1, .SD[, nm1, with=FALSE], list(compare_by)) ,
             by = .(Data_subsets= paste(slice_by_1, slice_by_2, sep='_'))]
#     Data_subsets    length     pulse  preasure
#1:     Male_Happy 0.3099704 0.3796494 0.6929493
#2:   Female_Happy 0.4369918 0.8767561 0.1937327
#3:   Male_Neutral 0.4953853 0.2418708 0.2986860
#4: Female_Neutral 0.3750688 0.2858796 0.8588069
#5:       Male_Sad 0.7159970 0.5686672 0.8528201
#6:     Female_Sad 0.7958502 0.5801208 0.6274940