我试图在月度住房数据上使用季度价格平减指数。你能帮我把季度数据转换成月度数据吗?我研究了在Stata中使用Cubic Spline Interpolation方法但是没有运气让do文件工作。我可以访问excel和R,所以这些都是我尝试的选项。感谢您的时间。
Quarterly CPI Deflator Data
1999-04-01 79.891
1999-07-01 80.180
1999-10-01 80.547
2000-01-01 81.163
2000-04-01 81.623
2000-07-01 82.152
2000-10-01 82.593
2001-01-01 83.112
2001-04-01 83.699
2001-07-01 83.973
2001-10-01 84.227
2002-01-01 84.497
2002-04-01 84.812
2002-07-01 85.190
2002-10-01 85.651
2003-01-01 86.179
2003-04-01 86.455
2003-07-01 86.934
2003-10-01 87.346
2004-01-01 88.108
2004-04-01 88.875
2004-07-01 89.422
2004-10-01 90.049
2005-01-01 90.883
2005-04-01 91.543
2005-07-01 92.399
2005-10-01 93.100
2006-01-01 93.832
2006-04-01 94.587
2006-07-01 95.247
2006-10-01 95.580
2007-01-01 96.654
2007-04-01 97.194
2007-07-01 97.531
2007-10-01 97.956
2008-01-01 98.516
2008-04-01 98.995
2008-07-01 99.673
2008-10-01 99.815
2009-01-01 100.062
2009-04-01 99.895
2009-07-01 99.873
2009-10-01 100.169
2010-01-01 100.522
2010-04-01 100.968
2010-07-01 101.429
2010-10-01 101.949
2011-01-01 102.399
2011-04-01 103.145
2011-07-01 103.768
2011-10-01 103.917
2012-01-01 104.466
2012-04-01 104.943
2012-07-01 105.508
2012-10-01 105.935
2013-01-01 106.363
2013-04-01 106.623
2013-07-01 107.128
2013-10-01 107.589
2014-01-01 108.009
2014-04-01 108.606
2014-07-01 109.044
2014-10-01 109.067
2015-01-01 109.099
2015-04-01 109.650
Monthly Data Monthly datapoint
1999-01-01 76.841
1999-02-01 79.863
1999-03-01 81.245
1999-04-01 78.911
答案 0 :(得分:2)
使用末尾显示的Lines
,将Lines
的输入读入动物园对象zd
,(或使用read.zoo("myfile.dat", header = TRUE)
从文件中读取)。然后计算"yearmon"
类月tt
的序列,进行插值并使用na.spline
进行插值。 (如果需要线性插值,则可以使用na.approx
代替na.spline
。)
library(zoo)
zd <- read.zoo(text = Lines, header = TRUE)
tt <- as.yearmon(seq(start(zd), end(zd), "month"))
zm <- na.spline(zd, as.yearmon, xout = tt)
我们使用了这个输入:
Lines <- "Quarterly CPI
1999-04-01 79.891
1999-07-01 80.180
1999-10-01 80.547
2000-01-01 81.163
2000-04-01 81.623
2000-07-01 82.152
2000-10-01 82.593
2001-01-01 83.112
2001-04-01 83.699
2001-07-01 83.973
2001-10-01 84.227
2002-01-01 84.497
2002-04-01 84.812
2002-07-01 85.190
2002-10-01 85.651
2003-01-01 86.179
2003-04-01 86.455
2003-07-01 86.934
2003-10-01 87.346
2004-01-01 88.108
2004-04-01 88.875
2004-07-01 89.422
2004-10-01 90.049
2005-01-01 90.883
2005-04-01 91.543
2005-07-01 92.399
2005-10-01 93.100
2006-01-01 93.832
2006-04-01 94.587
2006-07-01 95.247
2006-10-01 95.580
2007-01-01 96.654
2007-04-01 97.194
2007-07-01 97.531
2007-10-01 97.956
2008-01-01 98.516
2008-04-01 98.995
2008-07-01 99.673
2008-10-01 99.815
2009-01-01 100.062
2009-04-01 99.895
2009-07-01 99.873
2009-10-01 100.169
2010-01-01 100.522
2010-04-01 100.968
2010-07-01 101.429
2010-10-01 101.949
2011-01-01 102.399
2011-04-01 103.145
2011-07-01 103.768
2011-10-01 103.917
2012-01-01 104.466
2012-04-01 104.943
2012-07-01 105.508
2012-10-01 105.935
2013-01-01 106.363
2013-04-01 106.623
2013-07-01 107.128
2013-10-01 107.589
2014-01-01 108.009
2014-04-01 108.606
2014-07-01 109.044
2014-10-01 109.067
2015-01-01 109.099
2015-04-01 109.650"