在某些步骤间隔内近似连续函数的导数

时间:2015-08-08 20:24:37

标签: java function max min derivative

我希望用Java编写一个方法,找到连续函数的导数。这些是对方法做出的一些假设 -

  1. 该函数从x = 0到x =无穷大是连续的。
  2. 每个时间间隔都存在衍生物。
  3. 步长需要定义为参数。
  4. 该方法将在给定的时间间隔内找到连续函数的最大值/最小值[a:b]。
  5. 例如,函数cos(x)可以显示为0,pi,2pi,3pi,... npi的最大值或最小值。

    我正在寻找一种能够找到函数,lowerBound,upperBound和步长的所有这些最大值或最小值的方法。

    为了简化我的测试代码,我为cos(x)编写了一个程序。我使用的函数与cos(x)非常相似(至少在图形上)。这是我写的一些测试代码 -

    public class Test {
        public static void main(String[] args){
            Function cos = new Function () 
            {
            public double f(double x) {
            return Math.cos(x);
            }
        };
    
            findDerivative(cos, 1, 100, 0.01);      
        }
    
        // Needed as a reference for the interpolation function.
        public static interface Function {
        public double f(double x);
        }
    
         private static int sign(double x) {
        if (x < 0.0)
                return -1;
            else if (x > 0.0)
                return 1;
            else
                return 0;
        }
    
         // Finds the roots of the specified function passed in with a lower bound,
        // upper bound, and step size.
        public static void findRoots(Function f, double lowerBound,
                      double upperBound, double step) {
        double x = lowerBound, next_x = x;
        double y = f.f(x), next_y = y;
        int s = sign(y), next_s = s;
    
        for (x = lowerBound; x <= upperBound ; x += step) {
            s = sign(y = f.f(x));
            if (s == 0) {
            System.out.println(x);
            } else if (s != next_s) {
            double dx = x - next_x;
            double dy = y - next_y;
            double cx = x - dx * (y / dy);
            System.out.println(cx);
            }
            next_x = x; next_y = y; next_s = s;
        }
        }
    
        public static void findDerivative(Function f, double lowerBound, double 
                upperBound, double step) {
        double x = lowerBound, next_x = x;
        double dy = (f.f(x+step) - f.f(x)) / step;
    
        for (x = lowerBound; x <= upperBound; x += step) {
            double dx = x - next_x;
            dy = (f.f(x+step) - f.f(x)) / step;
            if (dy < 0.01 && dy > -0.01) {
                System.out.println("The x value is " + x + ". The value of the "
                        + "derivative is "+ dy);
                }
            next_x = x;
            }
        }   
    }
    

    查找根的方法用于查找零(这绝对有效)。我只将它包含在我的测试程序中,因为我认为我可以在找到衍生物的方法中使用类似的逻辑。

    的方法
    public static void findDerivative(Function f, double lowerBound, double 
                upperBound, double step) {
        double x = lowerBound, next_x = x;
        double dy = (f.f(x+step) - f.f(x)) / step;
    
        for (x = lowerBound; x <= upperBound; x += step) {
            double dx = x - next_x;
            dy = (f.f(x+step) - f.f(x)) / step;
            if (dy < 0.01 && dy > -0.01) {
                System.out.println("The x value is " + x + ". The value of the "
                        + "derivative is "+ dy);
                }
            next_x = x;
            }
        }   
    

    绝对可以改进。我怎么能以不同的方式写这个?这是样本输出。

    The x value is 3.129999999999977. The value of the derivative is -0.006592578364594814
    The x value is 3.1399999999999766. The value of the derivative is 0.0034073256197308943
    The x value is 6.26999999999991. The value of the derivative is 0.008185181673381337
    The x value is 6.27999999999991. The value of the derivative is -0.0018146842631128202
    The x value is 9.409999999999844. The value of the derivative is -0.009777764220086915
    The x value is 9.419999999999844. The value of the derivative is 2.2203830347677922E-4
    The x value is 12.559999999999777. The value of the derivative is 0.0013706082193754021
    The x value is 12.569999999999776. The value of the derivative is -0.00862924258597797
    The x value is 15.69999999999971. The value of the derivative is -0.002963251265619693
    The x value is 15.70999999999971. The value of the derivative is 0.007036644660118885
    The x value is 18.840000000000146. The value of the derivative is 0.004555886794943564
    The x value is 18.850000000000147. The value of the derivative is -0.005444028885981389
    The x value is 21.980000000000636. The value of the derivative is -0.006148510767989279
    The x value is 21.990000000000638. The value of the derivative is 0.0038513993028788107
    The x value is 25.120000000001127. The value of the derivative is 0.0077411191450771355
    The x value is 25.13000000000113. The value of the derivative is -0.0022587599505241585
    

3 个答案:

答案 0 :(得分:2)

在f计算成本高的情况下,我可以看到提高性能的主要内容,您可以保存f(x)的先前值,而不是每次迭代计算两次。此外,dx永远不会被使用,并且总是等于step。 next_x也从未使用过。某些变量可以在循环内声明。在内部移动变量声明可以提高可读性,但不提高性能。

public static void findDerivative(Function f, double lowerBound, double upperBound, double step) {
    double fxstep = f.f(x);

    for (double x = lowerBound; x <= upperBound; x += step) {
        double fx = fxstep;
        fxstep = f.f(x+step);
        double dy = (fxstep - fx) / step;
        if (dy < 0.01 && dy > -0.01) {
            System.out.println("The x value is " + x + ". The value of the "
                    + "derivative is " + dy);
        }
    }
}

答案 1 :(得分:0)

你所基于的java代码(来自rosettacode)不行,不依赖它。

  • 预计 y (双倍值)将完全为零。
    这种测试需要一个公差值。
  • 计算导数,并使用Newton's Method计算下一个 x 值,
    但是没有使用它来更新 x ,那里没有任何优化。

Here there is an example of Newton's Method in Java

是的,您可以使用Newton的方法优化您的代码,
f&#39;(x)给出时,它可以解决 f(x)= 0 , 当 f&#39;(x)给出同样的事情时,也可以解决 f&#39;(x)= 0

答案 2 :(得分:0)

为了澄清我的评论,我修改了链接中的代码 我使用了 step = 2 ,并得到了正确的结果。 检查它与其他相比有多快 这就是使用优化的原因,
否则减小步长和使用蛮力就可以了。

class Test {

    static double f(double x) {
        return Math.sin(x);
    }

    static double fprime(double x) {
        return Math.cos(x);
    }

    public static void main(String argv[]) {

        double tolerance = .000000001; // Our approximation of zero
        int max_count = 200; // Maximum number of Newton's method iterations

        /*
         * x is our current guess. If no command line guess is given, we take 0
         * as our starting point.
         */

        double x = 0.6;
        double low = -4;
        double high = 4;
        double step = 2;
        int inner_count = 0;

        for (double initial = low; initial <= high; initial += step) {
            x = initial;
            for (int count = 1; (Math.abs(f(x)) > tolerance)
                    && (count < max_count); count++) {
                inner_count++;
                x = x - f(x) / fprime(x);
            }

            if (Math.abs(f(x)) <= tolerance) {
                System.out.println("Step: " + inner_count + ", x = " + x);
            } else {
                System.out.println("Failed to find a zero");
            }
        }
    }

}