Python中的2D最近邻插值

时间:2015-07-30 21:35:31

标签: python numpy scipy interpolation nearest-neighbor

假设我们有以下查找表

        | 1.23    2.63    4.74    6.43    5.64
 -------|--------------------------------------
 -------|--------------------------------------
 2.56   |  0       0      1        0       1
 4.79   |  0       1      1        1       0
 6.21   |  1       0      0        0       0

此表包含标签矩阵(仅包含01 s),x值和y值。如何为这个查找表提供最近邻插值

示例:

Input: (5.1, 4.9)
Output: 1

Input: (3.54, 6.9)
Output: 0

1 个答案:

答案 0 :(得分:8)

查找表

如果您有完整的表格,则不需要插值,只需要查找最近的(x,y)值的索引并在表格中使用

In [1]: import numpy
   ...: x = numpy.array([1.23, 2.63, 4.74, 6.43, 5.64])
   ...: y = numpy.array([2.56, 4.79, 6.21])
   ...: data = numpy.array([[0, 0, 1, 0, 1],
   ...:                     [0, 1, 1, 1, 0],
   ...:                     [1, 0, 0, 0, 0]])
   ...: 
   ...: def lookupNearest(x0, y0):
   ...:     xi = numpy.abs(x-x0).argmin()
   ...:     yi = numpy.abs(y-y0).argmin()
   ...:     return data[yi,xi]

In [2]: lookupNearest(5.1, 4.9)
Out[2]: 1

In [3]: lookupNearest(3.54, 6.9)
Out[3]: 0

最近邻插值

如果您的数据由分散的点组成,

scipy.interpolate.NearestNDInterpolator将非常有用

例如,对于以下数据:

enter image description here 红色= 1,蓝色= 0

In [4]: points = numpy.array([[1.1, 2.5], 
   ...:                       [1.5, 5.2], 
   ...:                       [3.1, 3.0], 
   ...:                       [2.0, 6.0], 
   ...:                       [2.8, 4.7]])
   ...: values = numpy.array([0, 1, 1, 0, 0])

In [5]: from scipy.interpolate import NearestNDInterpolator
   ...: myInterpolator = NearestNDInterpolator(points, values)

In [6]: myInterpolator(1.7,4.5)
Out[6]: 1

In [7]: myInterpolator(2.5,4.0)
Out[7]: 0