查找2D点云的内圆/椭圆

时间:2015-07-27 06:58:20

标签: algorithm geometry computational-geometry point point-clouds

我有一堆2D点。你可以在左边的图片上看到它们。它们形成一些带有几个兔子耳朵的戒指。我的目标是找到大的内循环/椭圆,你可以在右侧看到。

enter image description here enter image description here

哪种算法对这种情况有用。

我尝试了RANSAC算法的变体(取5个随机点,形成一个椭圆,确定一个分数并重复)。我以某种方式设计了评分函数,椭圆内部的点得到了很多负点,并且在外面指向,但非常接近得到很多积极点。 但结果并不乐观。算法找到了环,但我得到了一些环的随机椭圆,而不是我想要的大内椭圆。

那里有什么好的策略吗?

1 个答案:

答案 0 :(得分:2)

以下是最适合圈子的一些Java代码。

https://www.spaceroots.org/documents/circle/CircleFitter.java

// Copyright (c) 2005-2007, Luc Maisonobe
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with
// or without modification, are permitted provided that
// the following conditions are met:
// 
//    Redistributions of source code must retain the
//    above copyright notice, this list of conditions and
//    the following disclaimer. 
//    Redistributions in binary form must reproduce the
//    above copyright notice, this list of conditions and
//    the following disclaimer in the documentation
//    and/or other materials provided with the
//    distribution. 
//    Neither the names of spaceroots.org, spaceroots.com
//    nor the names of their contributors may be used to
//    endorse or promote products derived from this
//    software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
// CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
// IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

package org.spaceroots;

import java.io.Reader;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Locale;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.awt.geom.Point2D;

/** Class fitting a circle to a set of points.
 * <p>This class implements the fitting algorithms described in the
 * paper <a
 * href="http://www.spaceroots.org/documents/circle/circle-fitting.pdf">
 * Finding the circle that best fits a set of points</a></p>
 * @author Luc Maisonobe
 */
public class CircleFitter {

  /** Test program entry point.
   * @param args command line arguments
   */
  public static void main(String[] args) {
    try {

      BufferedReader br = null;
      switch (args.length) {
      case 0 :
        br = new BufferedReader((new InputStreamReader(System.in)));
        break;
      case 1:
        br = new BufferedReader(new FileReader(args[0]));
        break;
      default :
        System.err.println("usage: java CircleFitter [file]");
        System.exit(1);
      }

      // read the points, ignoring blank lines and comment lines
      ArrayList list = new ArrayList();
      int l = 0;
      for (String line = br.readLine(); line != null; line = br.readLine()) {
        ++l;
        line = line.trim();
        if ((line.length() > 0) && (! line.startsWith("#"))) {
          // this is a data line, we expect two numerical fields
          String[] fields = line.split("\\s+");
          if (fields.length != 2) {
            throw new LocalException("syntax error at line " + l + ": " + line
                                     + "(expected two fields, found"
                                     + fields.length + ")");
          }

          // parse the fields and add the point to the list
          list.add(new Point2D.Double(Double.parseDouble(fields[0]),
                                      Double.parseDouble(fields[1])));

        }
      }
      Point2D.Double[] points =
        (Point2D.Double[]) list.toArray(new Point2D.Double[list.size()]);

      DecimalFormat format =
        new DecimalFormat("000.00000000",
                          new DecimalFormatSymbols(Locale.US));

      // fit a circle to the test points
      CircleFitter fitter = new CircleFitter();
      fitter.initialize(points);
      System.out.println("initial circle: "
                         + format.format(fitter.getCenter().x)
                         + " "     + format.format(fitter.getCenter().y)
                         + " "     + format.format(fitter.getRadius()));

      // minimize the residuals
      int iter = fitter.minimize(100, 0.1, 1.0e-12);
      System.out.println("converged after " + iter + " iterations");
      System.out.println("final circle: "
                         + format.format(fitter.getCenter().x)
                         + " "     + format.format(fitter.getCenter().y)
                         + " "     + format.format(fitter.getRadius()));

    } catch (IOException ioe) {
      System.err.println(ioe.getMessage());
      System.exit(1);
    } catch (LocalException le) {
      System.err.println(le.getMessage());
      System.exit(1);
    }
  }

  /** Build a new instance with a default current circle.
   */
  public CircleFitter() {
    center = new Point2D.Double(0.0, 0.0);
    rHat   = 1.0;
    points = null;
  }


  /** Initialize an approximate circle based on all triplets.
   * @param points circular ring sample points
   * @exception LocalException if all points are aligned
   */
  public void initialize(Point2D.Double[] points)
    throws LocalException {

    // store the points array
    this.points = points;

    // analyze all possible points triplets
    center.x = 0.0;
    center.y = 0.0;
    int n = 0;
    for (int i = 0; i < (points.length - 2); ++i) {
      Point2D.Double p1 = (Point2D.Double) points[i];
      for (int j = i + 1; j < (points.length - 1); ++j) {
        Point2D.Double p2 = (Point2D.Double) points[j];
        for (int k = j + 1; k < points.length; ++k) {
          Point2D.Double p3 = (Point2D.Double) points[k];

          // compute the triangle circumcenter
          Point2D.Double cc = circumcenter(p1, p2, p3);
          if (cc != null) {
            // the points are not aligned, we have a circumcenter
            ++n;
            center.x += cc.x;
            center.y += cc.y;
          }
        }
      }
    }

    if (n == 0) {
      throw new LocalException("all points are aligned");
    }

    // initialize using the circumcenters average
    center.x /= n;
    center.y /= n;
    updateRadius();

  }

  /** Update the circle radius.
   */
  private void updateRadius() {
    rHat = 0;
    for (int i = 0; i < points.length; ++i) {
      double dx = points[i].x - center.x;
      double dy = points[i].y - center.y;
      rHat += Math.sqrt(dx * dx + dy * dy);
    }
    rHat /= points.length;
  }

  /** Compute the circumcenter of three points.
   * @param pI first point
   * @param pJ second point
   * @param pK third point
   * @return circumcenter of pI, pJ and pK or null if the points are aligned
   */
  private Point2D.Double circumcenter(Point2D.Double pI,
                                      Point2D.Double pJ,
                                      Point2D.Double pK) {

    // some temporary variables
    Point2D.Double  dIJ = new Point2D.Double(pJ.x - pI.x, pJ.y - pI.y);
    Point2D.Double  dJK = new Point2D.Double(pK.x - pJ.x, pK.y - pJ.y);
    Point2D.Double  dKI = new Point2D.Double(pI.x - pK.x, pI.y - pK.y);
    double sqI = pI.x * pI.x + pI.y * pI.y;
    double sqJ = pJ.x * pJ.x + pJ.y * pJ.y;
    double sqK = pK.x * pK.x + pK.y * pK.y;

    // determinant of the linear system: 0 for aligned points
    double det = dJK.x * dIJ.y - dIJ.x * dJK.y;
    if (Math.abs(det) < 1.0e-10) {
      // points are almost aligned, we cannot compute the circumcenter
      return null;
    }

    // beware, there is a minus sign on Y coordinate!
    return new Point2D.Double(
           (sqI * dJK.y + sqJ * dKI.y + sqK * dIJ.y) / (2 * det),
          -(sqI * dJK.x + sqJ * dKI.x + sqK * dIJ.x) / (2 * det));

  }

  /** Minimize the distance residuals between the points and the circle.
   * <p>We use a non-linear conjugate gradient method with the Polak and
   * Ribiere coefficient for the computation of the search direction. The
   * inner minimization along the search direction is performed using a
   * few Newton steps. It is worthless to spend too much time on this inner
   * minimization, so the convergence threshold can be rather large.</p>
   * @param maxIter maximal iterations number on the inner loop (cumulated
   * across outer loop iterations)
   * @param innerThreshold inner loop threshold, as a relative difference on
   * the cost function value between the two last iterations
   * @param outerThreshold outer loop threshold, as a relative difference on
   * the cost function value between the two last iterations
   * @return number of inner loop iterations performed (cumulated
   * across outer loop iterations)
   * @exception LocalException if we come accross a singularity or if
   * we exceed the maximal number of iterations
   */
  public int minimize(int iterMax,
                      double innerThreshold, double outerThreshold)
    throws LocalException {

    computeCost();
    if ((J < 1.0e-10) || (Math.sqrt(dJdx * dJdx + dJdy * dJdy) < 1.0e-10)) {
      // we consider we are already at a local minimum
      return 0;
    }

    double previousJ = J;
    double previousU = 0.0, previousV = 0.0;
    double previousDJdx = 0.0, previousDJdy = 0.0;
    for (int iterations = 0; iterations < iterMax;) {

      // search direction
      double u = -dJdx;
      double v = -dJdy;
      if (iterations != 0) {
        // Polak-Ribiere coefficient
        double beta =
          (dJdx * (dJdx - previousDJdx) + dJdy * (dJdy - previousDJdy))
        / (previousDJdx * previousDJdx + previousDJdy * previousDJdy);
        u += beta * previousU;
        v += beta * previousV;
      }
      previousDJdx = dJdx;
      previousDJdy = dJdy;
      previousU    = u;
      previousV    = v;

      // rough minimization along the search direction
      double innerJ;
      do {
        innerJ = J;
        double lambda = newtonStep(u, v);
        center.x += lambda * u;
        center.y += lambda * v;
        updateRadius();
        computeCost();
      } while ((++iterations < iterMax)
               && ((Math.abs(J - innerJ) / J) > innerThreshold));

      // global convergence test
      if ((Math.abs(J - previousJ) / J) < outerThreshold) {
        return iterations;
      }
      previousJ = J;

    }

    throw new LocalException("unable to converge after "
                             + iterMax + " iterations");

  }

  /** Compute the cost function and its gradient.
   * <p>The results are stored as instance attributes.</p>
   */
  private void computeCost() throws LocalException {
    J    = 0;
    dJdx = 0;
    dJdy = 0;
    for (int i = 0; i < points.length; ++i) {
      double dx = points[i].x - center.x;
      double dy = points[i].y - center.y;
      double di = Math.sqrt(dx * dx + dy * dy);
      if (di < 1.0e-10) {
        throw new LocalException("cost singularity:"
                                 + " point at the circle center");
      }
      double dr    = di - rHat;
      double ratio = dr / di;
      J    += dr * (di + rHat);
      dJdx += dx * ratio;
      dJdy += dy * ratio;
    }
    dJdx *= 2.0;
    dJdy *= 2.0;
  }

  /** Compute the length of the Newton step in the search direction.
   * @param u abscissa of the search direction
   * @param v ordinate of the search direction
   * @return value of the step along the search direction
   */
  private double newtonStep(double u, double v) {

    // compute the first and second derivatives of the cost
    // along the specified search direction
    double sum1 = 0, sum2 = 0, sumFac = 0, sumFac2R = 0;
    for (int i = 0; i < points.length; ++i) {
      double dx     = center.x - points[i].x;
      double dy     = center.y - points[i].y;
      double di     = Math.sqrt(dx * dx + dy * dy);
      double coeff1 = (dx * u + dy * v) /  di;
      double coeff2 = di - rHat;
      sum1         += coeff1 * coeff2;
      sum2         += coeff2 / di;
      sumFac       += coeff1;
      sumFac2R     += coeff1 * coeff1 / di;
    }

    // step length attempting to nullify the first derivative
    return -sum1 / ((u * u + v * v) * sum2
                    - sumFac * sumFac / points.length
                    + rHat * sumFac2R);

  }

  /** Get the circle center.
   * @return circle center
   */
  public Point2D.Double getCenter() {
    return center;
  }

  /** Get the circle radius.
   * @return circle radius
   */
  public double getRadius() {
    return rHat;
  }

  /** Local exception class for algorithm errors. */
  public static class LocalException extends Exception {
    /** Build a new instance with the supplied message.
     * @param message error message
     */
    public LocalException(String message) {
      super(message);
    }
  }

  /** Current circle center. */
  private Point2D.Double center;

  /** Current circle radius. */
  private double rHat;

  /** Circular ring sample points. */
  private Point2D.Double[] points;

  /** Current cost function value. */
  private double J;

  /** Current cost function gradient. */
  private double dJdx;
  private double dJdy;

}

编辑一旦你有一个最合适的圆圈,你可以缩小它,直到满足一些内外点的比例。或者您可以移除圆圈外的所有点并再次运行最佳拟合圆算法,重复此过程直到您得到满意的答案。