使用共享内存减少CUDA内核计算的计算时间

时间:2015-07-21 13:25:18

标签: c++ cuda

我的图像大小为1920 x 1080.我正在从H2D转移,使用三个CUDA流从D2H处理和传输,其中每个流负责处理总数据的1/3。通过理解SM,SP,warp的概念,我能够优化每个块的块大小和线程数。如果必须在内核中进行简单的计算,代码运行令人满意(需要2毫秒)。下面的简单计算代码可以从源图像中找到R,G和B值,然后将这些值放在同一个源图像中。

ptr_source[numChannels*  (iw*y + x) + 0] = ptr_source[numChannels*  (iw*y + x) + 0];
ptr_source[numChannels*  (iw*y + x) + 1] = ptr_source[numChannels*  (iw*y + x) + 1];
ptr_source[numChannels*  (iw*y + x) + 2] = ptr_source[numChannels*  (iw*y + x) + 2];

但我必须执行更多的计算,这些计算独立于所有其他线程,计算时间增加了6 ms,这对我的应用来说太多了。我已经尝试在constant memory内声明最常用的常量值。这些计算的代码如下所示。在该代码中,我再次找到R,G和B值。然后,我通过将旧值与一些常数相乘来计算R,G和B的新值,最后我将这些新的R,G和B值再次放在相应位置的相同源图像中。

__constant__ int iw = 1080;
__constant__ int ih = 1920;
__constant__ int numChannels = 3;


__global__ void cudaKernel(unsigned char *ptr_source, int numCudaStreams)
{

    // Calculate our pixel's location
    int x = (blockIdx.x * blockDim.x) + threadIdx.x;
    int y = (blockIdx.y * blockDim.y) + threadIdx.y;

    // Operate only if we are in the correct boundaries
    if (x >= 0 && x < iw && y >= 0 && y < ih / numCudaStreams)
    {

        const int index_b = numChannels*  (iw*y + x) + 0;
        const int index_g = numChannels*  (iw*y + x) + 1;
        const int index_r = numChannels*  (iw*y + x) + 2;

        //GET VALUES: get the R,G and B values from Source image
        unsigned char b_val = ptr_source[index_b];
        unsigned char g_val = ptr_source[index_g];
        unsigned char r_val = ptr_source[index_r];

        float float_r_val = ((1.574090) * (float)r_val + (0.088825) * (float)g_val + (-0.1909)  * (float)b_val);
        float float_g_val = ((-0.344198) * (float)r_val + (1.579802) * (float)g_val + (-1.677604)  * (float)b_val);
        float float_b_val = ((-1.012951) * (float)r_val + (-1.781485) * (float)g_val + (2.404436)  * (float)b_val);


        unsigned char dst_r_val = (float_r_val > 255.0f) ? 255 : static_cast<unsigned char>(float_r_val);
        unsigned char dst_g_val = (float_g_val > 255.0f) ? 255 : static_cast<unsigned char>(float_g_val);
        unsigned char dst_b_val = (float_b_val > 255.0f) ? 255 : static_cast<unsigned char>(float_b_val);

        //PUT VALUES---put the new calculated values of R,G and B
        ptr_source[index_b] = dst_b_val;
        ptr_source[index_g] = dst_g_val;
        ptr_source[index_r] = dst_r_val;

    }
}

问题:我认为将图像片段(即ptr_src)传输到共享内存会有所帮助,但我对如何操作非常困惑。我的意思是,共享内存的范围仅适用于一个块,因此如何管理图像段到共享内存的传输。

PS:我的GPU是Quadro K2000,每个SM计算3.0,2 SM,192 SP。

2 个答案:

答案 0 :(得分:2)

我暂时不会添加太多评论来添加此代码:

const int iw = 1080;
const int ih = 1920;
const int numChannels = 3;

__global__ void cudaKernel3(unsigned char *ptr_source, int n)
{
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    int stride = blockDim.x * gridDim.x;
    uchar3 * p = reinterpret_cast<uchar3 *>(ptr_source);

    for(; idx < n; idx+=stride) {

        uchar3 vin = p[idx];
        unsigned char b_val = vin.x;
        unsigned char g_val = vin.y;
        unsigned char r_val = vin.z;

        float float_r_val = ((1.574090f) * (float)r_val + (0.088825f) * (float)g_val + (-0.1909f)  * (float)b_val);
        float float_g_val = ((-0.344198f) * (float)r_val + (1.579802f) * (float)g_val + (-1.677604f)  * (float)b_val);
        float float_b_val = ((-1.012951f) * (float)r_val + (-1.781485f) * (float)g_val + (2.404436f)  * (float)b_val);

        uchar3 vout;
        vout.x = (unsigned char)fminf(255.f, float_r_val);
        vout.y = (unsigned char)fminf(255.f, float_g_val);
        vout.z = (unsigned char)fminf(255.f, float_b_val);

        p[idx] = vout;
    }
}

// Original kernel with a bit of template magic to conditionally correct
// accidental double precision arithmetic removed for brevity

int main()
{
    const size_t sz = iw * ih * numChannels;
    typedef unsigned char uchar;
    uchar * image = new uchar[sz];

    uchar v = 0;
    for(int i=0; i<sz; i++) {
        image[i] = v;
        v = (++v > 128) ? 0 : v;
    }

    uchar * image_;
    cudaMalloc((void **)&image_, sz);
    cudaMemcpy(image_, image, sz, cudaMemcpyHostToDevice);

    dim3 blocksz(32,32);
    dim3 gridsz(1+iw/blocksz.x, 1+ih/blocksz.y);
    cudaKernel<1><<<gridsz, blocksz>>>(image_, 1);
    cudaDeviceSynchronize();

    cudaMemcpy(image_, image, sz, cudaMemcpyHostToDevice);
    cudaKernel<0><<<gridsz, blocksz>>>(image_, 1);
    cudaDeviceSynchronize();

    cudaMemcpy(image_, image, sz, cudaMemcpyHostToDevice);
    cudaKernel3<<<16, 512>>>(image_, iw * ih);
    cudaDeviceSynchronize();

    cudaDeviceReset();

    return 0;
}

这里的想法是只拥有可以驻留在设备上的线程,并让它们处理整个图像,每个线程发出多个输出。块调度在CUDA中非常便宜,但它不是免费的,也不是索引计算和一个线程执行有用工作所需的所有其他“设置”代码。因此,这个想法只是将这些成本摊销到许多产品上。因为您的图像只是线性记忆,并且您对每个条目执行的操作完全独立,所以使用2D网格和2D索引没有任何意义。它只是额外的设置代码,会降低代码速度。您还将看到使用向量类型(char3),它可以通过减少每个像素的内存转换次数来提高内存吞吐量。

另请注意,在具有双精度功能的GPU上,将编译双精度常量并生成64位浮点运算。与单精度相比,执行双精度时会有2到12倍的性能损失,具体取决于您的GPU。当我编译您发布的内核并查看PTX时,CUDA 7发布编译器为sm_30架构发出的内容(与您的GPU相同),我在像素计算代码中看到了这一点:

cvt.f64.f32     %fd1, %f4;
mul.f64         %fd2, %fd1, 0d3FF92F78FEEF5EC8;
ld.global.u8    %rs9, [%rd1+1];
cvt.rn.f32.u16  %f5, %rs9;
cvt.f64.f32     %fd3, %f5;
fma.rn.f64      %fd4, %fd3, 0d3FB6BD3C36113405, %fd2;
ld.global.u8    %rs10, [%rd1];
cvt.rn.f32.u16  %f6, %rs10;
cvt.f64.f32     %fd5, %f6;
fma.rn.f64      %fd6, %fd5, 0dBFC86F694467381D, %fd4;
cvt.rn.f32.f64  %f1, %fd6;
mul.f64         %fd7, %fd1, 0dBFD607570C564F98;
fma.rn.f64      %fd8, %fd3, 0d3FF946DE76427C7C, %fd7;
fma.rn.f64      %fd9, %fd5, 0dBFFAD7774ABA3876, %fd8;
cvt.rn.f32.f64  %f2, %fd9;
mul.f64         %fd10, %fd1, 0dBFF0350C1B97353B;
fma.rn.f64      %fd11, %fd3, 0dBFFC80F66A550870, %fd10;
fma.rn.f64      %fd12, %fd5, 0d40033C48F10A99B7, %fd11;
cvt.rn.f32.f64  %f3, %fd12;

注意,所有内容都提升到64位浮点,并且乘法都以64位完成,浮点常数采用IEEE754双格式,然后结果降级为32位。这是一个真正的性能成本,你应该小心避免它通过适当定义的浮点常量作为单精度。

在GT620M(2个SM Fermi移动部件,使用电池运行)上运行时,我们从nvprof获得以下配置文件数据

Time(%)      Time     Calls       Avg       Min       Max  Name
 39.44%  17.213ms         1  17.213ms  17.213ms  17.213ms  void cudaKernel<int=1>(unsigned char*, int)
 35.02%  15.284ms         3  5.0947ms  5.0290ms  5.2022ms  [CUDA memcpy HtoD]
 18.51%  8.0770ms         1  8.0770ms  8.0770ms  8.0770ms  void cudaKernel<int=0>(unsigned char*, int)
  7.03%  3.0662ms         1  3.0662ms  3.0662ms  3.0662ms  cudaKernel3(unsigned char*, int)

==5504== API calls:
Time(%)      Time     Calls       Avg       Min       Max  Name
 95.37%  1.01433s         1  1.01433s  1.01433s  1.01433s  cudaMalloc
  3.17%  33.672ms         3  11.224ms  4.8036ms  19.039ms  cudaDeviceSynchronize

  1.29%  13.706ms         3  4.5687ms  4.5423ms  4.5924ms  cudaMemcpy
  0.12%  1.2560ms        83  15.132us     427ns  541.81us  cuDeviceGetAttribute
  0.03%  329.28us         3  109.76us  91.086us  139.41us  cudaLaunch
  0.02%  209.54us         1  209.54us  209.54us  209.54us  cuDeviceGetName
  0.00%  23.520us         1  23.520us  23.520us  23.520us  cuDeviceTotalMem
  0.00%  13.685us         3  4.5610us  2.9930us  7.6980us  cudaConfigureCall
  0.00%  9.4090us         6  1.5680us     428ns  3.4210us  cudaSetupArgument
  0.00%  5.1320us         2  2.5660us  2.5660us  2.5660us  cuDeviceGetCount
  0.00%  2.5660us         2  1.2830us  1.2830us  1.2830us  cuDeviceGet

当在更大的东西上运行时(带有7个SMX的GTX 670 Kepler设备):

==9442== NVPROF is profiling process 9442, command: ./a.out
==9442== Profiling application: ./a.out
==9442== Profiling result:
Time(%)      Time     Calls       Avg       Min       Max  Name
 65.68%  2.6976ms         3  899.19us  784.56us  1.0829ms  [CUDA memcpy HtoD]
 20.84%  856.05us         1  856.05us  856.05us  856.05us  void cudaKernel<int=1>(unsigned char*, int)
  7.90%  324.64us         1  324.64us  324.64us  324.64us  void cudaKernel<int=0>(unsigned char*, int)
  5.58%  229.12us         1  229.12us  229.12us  229.12us  cudaKernel3(unsigned char*, int)

==9442== API calls:
Time(%)      Time     Calls       Avg       Min       Max  Name
 55.88%  45.443ms         1  45.443ms  45.443ms  45.443ms  cudaMalloc
 38.16%  31.038ms         1  31.038ms  31.038ms  31.038ms  cudaDeviceReset
  3.55%  2.8842ms         3  961.40us  812.99us  1.1982ms  cudaMemcpy
  1.92%  1.5652ms         3  521.72us  294.16us  882.27us  cudaDeviceSynchronize
  0.32%  262.49us        83  3.1620us     150ns  110.94us  cuDeviceGetAttribute
  0.09%  74.253us         3  24.751us  15.575us  41.784us  cudaLaunch
  0.03%  22.568us         1  22.568us  22.568us  22.568us  cuDeviceTotalMem
  0.03%  20.815us         1  20.815us  20.815us  20.815us  cuDeviceGetName
  0.01%  7.3900us         6  1.2310us     200ns  5.3890us  cudaSetupArgument
  0.00%  3.6510us         2  1.8250us     674ns  2.9770us  cuDeviceGetCount
  0.00%  3.1440us         3  1.0480us     516ns  1.9410us  cudaConfigureCall
  0.00%  2.1600us         2  1.0800us     985ns  1.1750us  cuDeviceGet

因此,只需修复基本错误并在较小和较大的设备上使用合理的设计模式,就可以实现的速度。信不信由你。

答案 1 :(得分:1)

共享内存对您的情况没有帮助,您的内存访问不是可靠的。

您可以尝试以下操作:将您的char * ptr_source替换为uchar3 *应该可以帮助您的线程访问阵列中的连续数据。 uchar3只是意味着:3个连续的unsigned char。

由于同一warp中的线程同时执行相同的指令,因此您将拥有这种访问模式:

假设您尝试访问地址处的内存:0x3F0000。

thread 1 copies data at : 0x3F0000 then 0x3F0001 then 0x3F0002

thread 2 copies data at : 0x3F0003 then 0x3F0004 then 0x3F0005

0x3F0000和0x3F0003不是连续的,因此您访问数据的性能会很差。

使用uchar3:

thread 1 : 0x3F0000 to 0x3F0002

thread 2 : 0x3F0003 to 0x3F0005

就像每个线程复制连续数据一样,内存控制器可以快速复制它。

您也可以替换:

(float_r_val > 255.0f) ? 255 : static_cast<unsigned char>(float_r_val);

float_r_val = fmin(255.0f, float_r_val);

这应该给你一个像这样的内核:

__global__ void cudaKernel(uchar3 *ptr_source, int numCudaStreams)
{

    // Calculate our pixel's location
    int x = (blockIdx.x * blockDim.x) + threadIdx.x;
    int y = (blockIdx.y * blockDim.y) + threadIdx.y;

    // Operate only if we are in the correct boundaries
    if (x >= 0 && x < iw && y >= 0 && y < ih / numCudaStreams)
    {
        const int index =   (iw*y + x);

        uchar3 val = ptr_source)[index];

        float float_r_val = ((1.574090f) * (float)val.x + (0.088825f) * (float)val.y + (-0.1909f)  * (float)b_val.z);
        float float_g_val = ((-0.344198f) * (float)val.x + (1.579802f) * (float)val.y + (-1.677604f)  * (float)b_val.z);
        float float_b_val = ((-1.012951f) * (float)val.x + (-1.781485f) * (float)val.y + (2.404436f)  * (float)b_val.z);

        ptr_source[index] = make_uchar3( fmin(255.0f, float_r_val), fmin(255.0f, float_g_val), fmin(255.0f, float_b_val) );
    }
}

我希望这些更新能够提高性能。