基于随机指令的减少翘曲预计比使用共享内存或全局内存减少执行速度更快,如 -
中所述https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
和
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-kepler-shuffle/
在下面的代码中,我试图验证这一点: -
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cuda_profiler_api.h>
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
__inline__ __device__
float warpReduceSum(float val) {
for (int offset = 16; offset > 0; offset /= 2)
val += __shfl_down(val, offset);
return val;
}
__inline__ __device__
float blockReduceSum(float val) {
static __shared__ int shared[32];
int lane = threadIdx.x%32;
int wid = threadIdx.x / 32;
val = warpReduceSum(val);
//write reduced value to shared memory
if (lane == 0) shared[wid] = val;
__syncthreads();
//ensure we only grab a value from shared memory if that warp existed
val = (threadIdx.x<blockDim.x / 32) ? shared[lane] : int(0);
if (wid == 0) val = warpReduceSum(val);
return val;
}
__global__ void device_reduce_stable_kernel(float *in, float* out, int N) {
float sum = int(0);
//printf("value = %d ", blockDim.x*gridDim.x);
for (int i = blockIdx.x*blockDim.x + threadIdx.x; i<N; i += blockDim.x*gridDim.x) {
sum += in[i];
}
sum = blockReduceSum(sum);
if (threadIdx.x == 0)
out[blockIdx.x] = sum;
}
void device_reduce_stable(float *in, float* out, int N) {
//int threads = 512;
//int blocks = min((N + threads - 1) / threads, 1024);
const int maxThreadsPerBlock = 1024;
int threads = maxThreadsPerBlock;
int blocks = N / maxThreadsPerBlock;
device_reduce_stable_kernel << <blocks, threads >> >(in, out, N);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
device_reduce_stable_kernel << <1, 1024 >> >(out, out, blocks);
//cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
}
__global__ void global_reduce_kernel(float * d_out, float * d_in)
{
int myId = threadIdx.x + blockDim.x * blockIdx.x;
int tid = threadIdx.x;
// do reduction in global mem
for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1)
{
if (tid < s)
{
d_in[myId] += d_in[myId + s];
}
__syncthreads(); // make sure all adds at one stage are done!
}
// only thread 0 writes result for this block back to global mem
if (tid == 0)
{
d_out[blockIdx.x] = d_in[myId];
}
}
__global__ void shmem_reduce_kernel(float * d_out, const float * d_in)
{
// sdata is allocated in the kernel call: 3rd arg to <<<b, t, shmem>>>
extern __shared__ float sdata[];
int myId = threadIdx.x + blockDim.x * blockIdx.x;
int tid = threadIdx.x;
// load shared mem from global mem
sdata[tid] = d_in[myId];
__syncthreads(); // make sure entire block is loaded!
// do reduction in shared mem
for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1)
{
if (tid < s)
{
sdata[tid] += sdata[tid + s];
}
__syncthreads(); // make sure all adds at one stage are done!
}
// only thread 0 writes result for this block back to global mem
if (tid == 0)
{
d_out[blockIdx.x] = sdata[0];
}
}
void reduce(float * d_out, float * d_intermediate, float * d_in,
int size, bool usesSharedMemory)
{
// assumes that size is not greater than maxThreadsPerBlock^2
// and that size is a multiple of maxThreadsPerBlock
const int maxThreadsPerBlock = 1024;
int threads = maxThreadsPerBlock;
int blocks = size / maxThreadsPerBlock;
if (usesSharedMemory)
{
shmem_reduce_kernel << <blocks, threads, threads * sizeof(float) >> >
(d_intermediate, d_in);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
}
else
{
global_reduce_kernel << <blocks, threads >> >
(d_intermediate, d_in);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
}
// now we're down to one block left, so reduce it
threads = blocks; // launch one thread for each block in prev step
blocks = 1;
if (usesSharedMemory)
{
shmem_reduce_kernel << <blocks, threads, threads * sizeof(float) >> >
(d_out, d_intermediate);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
}
else
{
global_reduce_kernel << <blocks, threads >> >
(d_out, d_intermediate);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error: %s\n", cudaGetErrorString(err));
}
}
int main()
{
/*int deviceCount;
cudaGetDeviceCount(&deviceCount);
if (deviceCount == 0) {
fprintf(stderr, "error: no devices supporting CUDA.\n");
exit(EXIT_FAILURE);
}
int dev = 0;
cudaSetDevice(dev);
cudaDeviceProp devProps;
if (cudaGetDeviceProperties(&devProps, dev) == 0)
{
printf("Using device %d:\n", dev);
printf("%s; global mem: %dB; compute v%d.%d; clock: %d kHz\n",
devProps.name, (int)devProps.totalGlobalMem,
(int)devProps.major, (int)devProps.minor,
(int)devProps.clockRate);
}
*/
const int ARRAY_SIZE = 2048;
const int ARRAY_BYTES = ARRAY_SIZE * sizeof(float);
// generate the input array on the host
float h_in[ARRAY_SIZE];
float sum = 0.0f;
for (int i = 0; i < ARRAY_SIZE; i++) {
// generate random float in [-1.0f, 1.0f]
h_in[i] = i;
sum += h_in[i];
}
// declare GPU memory pointers
float * d_in, *d_intermediate, *d_out;
// allocate GPU memory
cudaMalloc((void **)&d_in, ARRAY_BYTES);
cudaMalloc((void **)&d_intermediate, ARRAY_BYTES); // overallocated
cudaMalloc((void **)&d_out, sizeof(float));
// transfer the input array to the GPU
cudaMemcpy(d_in, h_in, ARRAY_BYTES, cudaMemcpyHostToDevice);
int whichKernel = 2;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
// launch the kernel
cudaProfilerStart();
switch (whichKernel) {
case 0:
printf("Running global reduce\n");
cudaEventRecord(start, 0);
//for (int i = 0; i < 100; i++)
//{
reduce(d_out, d_intermediate, d_in, ARRAY_SIZE, false);
//}
cudaEventRecord(stop, 0);
break;
case 1:
printf("Running reduce with shared mem\n");
cudaEventRecord(start, 0);
//for (int i = 0; i < 100; i++)
//{
reduce(d_out, d_intermediate, d_in, ARRAY_SIZE, true);
//}
cudaEventRecord(stop, 0);
break;
case 2:
printf("Running reduce with shuffle instruction\n");
cudaEventRecord(start, 0);
/*for (int i = 0; i < 100; i++)
{*/
device_reduce_stable(d_in, d_out, ARRAY_SIZE);
//}
cudaEventRecord(stop, 0);
break;
default:
fprintf(stderr, "error: ran no kernel\n");
exit(EXIT_FAILURE);
}
cudaProfilerStop();
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
elapsedTime /= 100.0f; // 100 trials
// copy back the sum from GPU
float h_out;
cudaMemcpy(&h_out, d_out, sizeof(float), cudaMemcpyDeviceToHost);
printf("average time elapsed: %f\n", elapsedTime);
// free GPU memory allocation
cudaFree(d_in);
cudaFree(d_intermediate);
cudaFree(d_out);
return 0;
}
结果显示,基于warp的减少几乎是共享内存减少时间的两倍。这些结果与预期的行为相矛盾。 该实验在Tesla K40c上进行,计算能力高于3.0。
答案 0 :(得分:1)
我正在比较以下两个减少内核,一个使用仅共享内存而不使用warp shuffling用于最后一个warp减少阶段(version4
)和一个使用共享内存AND warw shuffling for last warp reduction stage (version5
)。
version4
template <class T>
__global__ void version4(T *g_idata, T *g_odata, unsigned int N)
{
extern __shared__ T sdata[];
unsigned int tid = threadIdx.x; // --- Local thread index
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x; // --- Global thread index - Fictitiously double the block dimension
// --- Performs the first level of reduction in registers when reading from global memory.
T mySum = (i < N) ? g_idata[i] : 0;
if (i + blockDim.x < N) mySum += g_idata[i + blockDim.x];
sdata[tid] = mySum;
// --- Before going further, we have to make sure that all the shared memory loads have been completed
__syncthreads();
// --- Reduction in shared memory. Only half of the threads contribute to reduction.
for (unsigned int s = blockDim.x / 2; s > 32; s >>= 1)
{
if (tid < s) { sdata[tid] = mySum = mySum + sdata[tid + s]; }
// --- At the end of each iteration loop, we have to make sure that all memory operations have been completed
__syncthreads();
}
// --- Single warp reduction by loop unrolling. Assuming blockDim.x >64
if (tid < 32) {
sdata[tid] = mySum = mySum + sdata[tid + 32]; __syncthreads();
sdata[tid] = mySum = mySum + sdata[tid + 16]; __syncthreads();
sdata[tid] = mySum = mySum + sdata[tid + 8]; __syncthreads();
sdata[tid] = mySum = mySum + sdata[tid + 4]; __syncthreads();
sdata[tid] = mySum = mySum + sdata[tid + 2]; __syncthreads();
sdata[tid] = mySum = mySum + sdata[tid + 1]; __syncthreads();
}
// --- Write result for this block to global memory. At the end of the kernel, global memory will contain the results for the summations of
// individual blocks
if (tid == 0) g_odata[blockIdx.x] = mySum;
}
version5
template <class T>
__global__ void version5(T *g_idata, T *g_odata, unsigned int N)
{
extern __shared__ T sdata[];
unsigned int tid = threadIdx.x; // --- Local thread index
unsigned int i = blockIdx.x * (blockDim.x * 2) + threadIdx.x; // --- Global thread index - Fictitiously double the block dimension
// --- Performs the first level of reduction in registers when reading from global memory.
T mySum = (i < N) ? g_idata[i] : 0;
if (i + blockDim.x < N) mySum += g_idata[i + blockDim.x];
sdata[tid] = mySum;
// --- Before going further, we have to make sure that all the shared memory loads have been completed
__syncthreads();
// --- Reduction in shared memory. Only half of the threads contribute to reduction.
for (unsigned int s = blockDim.x / 2; s > 32; s >>= 1)
{
if (tid < s) { sdata[tid] = mySum = mySum + sdata[tid + s]; }
// --- At the end of each iteration loop, we have to make sure that all memory operations have been completed
__syncthreads();
}
// --- Single warp reduction by shuffle operations
if (tid < 32)
{
// --- Last iteration removed from the for loop, but needed for shuffle reduction
mySum += sdata[tid + 32];
// --- Reduce final warp using shuffle
//for (int offset = warpSize / 2; offset > 0; offset /= 2) mySum += __shfl_down_sync(0xffffffff, mySum, offset);
for (int offset=1; offset < warpSize; offset *= 2) mySum += __shfl_xor_sync(0xffffffff, mySum, i);
}
// --- Write result for this block to global memory. At the end of the kernel, global memory will contain the results for the summations of
// individual blocks
if (tid == 0) g_odata[blockIdx.x] = mySum;
}
我确认两者之间没有敏感差异。在我的GTX920M卡上,时间如下:
N = 33554432
version4 = 27.5ms
version5 = 27.095ms
所以,我正在确认罗伯特上面的评论。