我需要总结一下我分配给群组的字符串数量,我知道我可以在dplyr / tidyr中完成,但我错过了一些东西。
示例数据集:
Owner = c('bob','julia','cheryl','bob','julia','cheryl')
Day = c('Mon', 'Tue')
Locn = c('house','store','apartment','office','house','shop')
data <- data.frame(Owner, Day, Locn)
看起来像这样:
Owner Day Locn
1 bob Mon house
2 julia Tue store
3 cheryl Mon apartment
4 bob Tue office
5 julia Mon house
6 cheryl Tue shop
我想按名称和日期分组,然后按列计算分组位置。在这个例子中,我希望'house'和'apartment'添加到标题为'Home'的列中,'store','office'和'shop'将计入“Work”列中。
我当前的代码(不起作用):
grouped_locn <- data %>%
dplyr::arrange(Owner, Day) %>%
dplyr::group_by(Owner, Day) %>%
dplyr::summarize(Home = which(data$Locn %in% c('house', 'apartment')),
Work = which(data$Locn %in% c("store", "office", "apartment")))
我只是将我目前的尝试包括在总结步骤中,以显示我是如何接近它的。 Home和Work代码当前返回包含该组元素的行号的向量(即Home = 1 3 5)
我的预期输出:
Owner Day Home Work
1 bob Mon 1 0
2 bob Tue 0 1
3 julia Mon 1 0
4 julia Tue 0 1
5 cheryl Mon 1 0
6 cheryl Tue 0 1
在实际数据集(30k +行)中,每个所有者每天有多个Locn值,因此Home和Work计数可以是1和0以外的数字(因此没有布尔值)。
非常感谢。
答案 0 :(得分:10)
使用data.table
旧版本(v <1.9.5)
library(data.table) # v < 1.9.5
setDT(data)[, Locn2 := c("Work", "Home")[(Locn %in% c('house', 'apartment')) + 1L]]
dcast.data.table(data, Owner + Day ~ Locn2, length)
# Owner Day Home Work
# 1: bob Mon 1 0
# 2: bob Tue 0 1
# 3: cheryl Mon 1 0
# 4: cheryl Tue 0 1
# 5: julia Mon 1 0
# 6: julia Tue 0 1
对于较新版本(v&gt; = 1.9.5),您可以在一行中执行此操作
dcast(setDT(data), Owner + Day ~ c("Work", "Home")[(Locn %in% c('house', 'apartment')) + 1L], length)
这是tidyr
替代
library(dplyr)
library(tidyr)
data %>%
mutate(temp = 1L,
Locn = ifelse(Locn %in% c('house', 'apartment'), "Home", "Work")) %>%
spread(Locn, temp, fill = 0L)
# Owner Day Home Work
# 1 bob Mon 1 0
# 2 bob Tue 0 1
# 3 cheryl Mon 1 0
# 4 cheryl Tue 0 1
# 5 julia Mon 1 0
# 6 julia Tue 0 1
答案 1 :(得分:7)
试试这个
data %>%
group_by(Owner, Day) %>%
summarise(Home = sum(Locn %in% c("house", "apartment")),
Work = sum(Locn %in% c("store", "office", "shop")))
答案 2 :(得分:4)
您可以使用model.matrix
base R
data[c('Work', 'Home')] <- model.matrix(~0+indx, transform(data,
indx = Locn %in% c('house', 'apartment')))
data
# Owner Day Locn Work Home
#1 bob Mon house 0 1
#2 julia Tue store 1 0
#3 cheryl Mon apartment 0 1
#4 bob Tue office 1 0
#5 julia Mon house 0 1
#6 cheryl Tue shop 1 0
或
library(qdapTools)
data[c('Work', 'Home')] <- mtabulate(data$Locn %in% c('house', 'apartment'))
答案 3 :(得分:2)
这就像@lukeA提出的解决方案,但使用grepl
函数:
library(dplyr)
data %<>% arrange(Owner, Day) %>% group_by(Owner, Day) %>%
summarise(Home=sum((grepl("house|apartment", Locn))*1),
Work=sum((grepl("store|office|shop", Locn))*1))