如何实现数值稳定的加权logaddexp?

时间:2015-07-12 11:07:07

标签: math language-agnostic numerical-stability

最稳定的数值计算方法是什么:

log[(wx * exp(x) + wy * exp_y)/(wx + wy)]

权重wx, wy > 0

没有权重,此函数为logaddexp,可以使用NumPy在Python中实现:

tmp = x - y
return np.where(tmp > 0,
                x + np.log1p(np.exp(-tmp)),
                y + np.log1p(np.exp(tmp)))

我应该如何将其推广到加权版本?

2 个答案:

答案 0 :(得分:5)

如果将加权表达式重写为,则可以使用原始logaddexp函数,

new logadd expression

这相当于,

logaddexp( x + log(w_x), y + log(w_y) ) - log(w_x + w_y)

应该与原始logaddexp实现一样在数值上稳定。

注意:我指的是xy,而不是x和{{{{}}} numpy.logaddexp函数1}},正如你在问题中提到的那样。

答案 1 :(得分:1)

def weighted_logaddexp(x, wx, y, wy):
    # Returns:
    #   log[(wx * exp(x) + wy * exp_y)/(wx + wy)]
    #   = log(wx/(wx+wy)) + x + log(1 + exp(y - x + log(wy)-log(wx)))
    #   = log1p(-wy/(wx+wy)) + x + log1p((wy exp_y) / (wx exp(x)))
    if wx == 0.0:
        return y
    if wy == 0.0:
        return x
    total_w = wx + wy
    first_term = np.where(wx > wy,
                          np.log1p(-wy / total_w),
                          np.log1p(-wx / total_w))
    exp_x = np.exp(x)
    exp_y = np.exp(y)
    wx_exp_x = wx * exp_x
    wy_exp_y = wy * exp_y
    return np.where(wy_exp_y < wx_exp_x,
                    x + np.log1p(wy_exp_y / wx_exp_x),
                    y + np.log1p(wx_exp_x / wy_exp_y)) + first_term

以下是我比较两种解决方案的方法:

import math
import numpy as np
import mpmath as mp
from tools.numpy import weighted_logaddexp

def average_error(ideal_function, test_function, n_args):
    x_y = [np.linspace(0.1, 3, 20) for _ in range(n_args)]
    xs_ys = np.meshgrid(*x_y)

    def e(*args):
        return ideal_function(*args) - test_function(*args)
    e = np.frompyfunc(e, n_args, 1)
    error = e(*xs_ys) ** 2
    return np.mean(error)


def ideal_function(x, wx, y, wy):
    return mp.log((mp.exp(x) * wx + mp.exp(y) * wy) / mp.fadd(wx, wy))

def test_function(x, wx, y, wy):
    return np.logaddexp(x + math.log(wx), y + math.log(wy)) - math.log(wx + wy)

mp.prec = 100
print(average_error(ideal_function, weighted_logaddexp, 4))
print(average_error(ideal_function, test_function, 4))