我有以下代码,对于我可以设法编写的具有延迟传播的分段树。此代码不适用于将某个范围内的所有数字与值相乘,例如x。我认为我在update_mult函数中做了一些不正确的事情。树维护了一个范围的总和。
我无法弄清楚update_mult的问题。专家,你能帮我找一下实施的错误吗?
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <math.h>
#include <set>
#include <assert.h>
#include <cstring>
#include <string>
#include <string.h>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <time.h>
#include <climits>
using namespace std;
#define FOR(i,a,b) for(int i=a;i<b;++i)
#define FORR(i,a,b) for(int i=a;i>=b;--i)
#define FORC(it,container) for(typeof(container.begin()) it=container.begin();it!=container.end();++it)
#define INT(x) scanf("%d",&x)
#define LLD(x) scanf("%lld",&x)
#define STR(x) scanf("%s",x)
#define CHAR(x) scanf("%c",&x)
#define PINT(x) printf("%d\n",x)
#define PLLD(x) printf("%lld\n",x)
#define CLR(x) memset(x,0,sizeof(x));
const int INF = INT_MAX;
const int MAX = 1000001;
typedef long long LL;
LL arr[MAX+5];
LL MOD = 1e9 + 7;
struct data
{
LL sumsq;
LL sum;
LL lazyset;
LL setval;
LL lazyMult;
LL lazyVal;
LL addval;
void assignleaf()
{
}
void assignleaf(int idx ,int val)
{
}
void combine(data &l, data &r)
{
sum = (l.sum + r.sum)%MOD;
}
};
data tree[10*MAX+5];
void pushdown(int node,int segs,int sege)
{
int mid = segs+sege; mid /= 2;
if(tree[node].lazyset==1)
{
tree[node].lazyset=0;
tree[2*node].lazyset=1;
tree[2*node+1].lazyset=1;
tree[2*node].setval = tree[node].setval;
tree[2*node+1].setval = tree[node].setval;
tree[2*node].sum = ((mid-segs+1)*tree[node].setval)%MOD;
tree[2*node+1].sum = ((sege-mid)*tree[node].setval)%MOD;
tree[2*node].addval=0;
tree[2*node+1].addval=0;
}
if(tree[node].lazyMult==1)
{
tree[node].lazyMult=0;
tree[2*node].lazyMult=1;
tree[2*node+1].lazyMult=1;
tree[2*node].sum = (tree[2*node].sum * tree[node].lazyVal)%MOD;
tree[2*node+1].sum = (tree[2*node+1].sum * tree[node].lazyVal)%MOD;
tree[2*node].addval=0;
tree[2*node+1].addval=0;
}
if(tree[node].addval)
{
tree[2*node].addval = (tree[2*node].addval +tree[node].addval)%MOD;
tree[2*node+1].addval = (tree[2*node+1].addval +tree[node].addval)%MOD;
tree[2*node].sum = (tree[2*node].sum + ((mid-segs+1)*tree[node].addval)%MOD)%MOD;
tree[2*node+1].sum =(tree[2*node+1].sum+ ((sege-mid)*tree[node].addval)%MOD)%MOD;
tree[node].addval = 0;
}
}
void build_tree(int node,int s,int e)
{
tree[node].addval=0;
tree[node].lazyset=0;
if(s>e) return;
if(s==e)
{
tree[node].sum = arr[s];
return;
}
int mid=(s+e)/2;
build_tree(2*node,s,mid);
build_tree(2*node+1,mid+1,e);
tree[node].combine(tree[2*node],tree[2*node+1]);
}
LL query(int node,int segs,int sege,int qs,int qe)
{
//cout<<" q -- node = "<<node<<" segs = "<<segs<<" sege = "<<sege<<" qs = "<<qs<<" qe = "<<qe<<endl;
if(segs>sege || segs>qe || sege < qs)
{
if(tree[node].lazyset||tree[node].addval)
pushdown(node,segs,sege);
return 0;
}
if(tree[node].lazyset || tree[node].addval)
pushdown(node,segs,sege);
if(segs>=qs && sege<=qe)
{
//cout<<"q1 node = "<<node<<" segs = "<<segs<<" sege = "<<sege<<" sumsq = "<<tree[node].sumsq<<endl;
return tree[node].sum % MOD;
}
int mid= segs+sege; mid /= 2;
return (query(2*node,segs,mid,qs,qe) + query(2*node+1,mid+1,sege,qs,qe))%MOD;
}
//comm=1
void update_add(int node,int segs,int sege,int qs,int qe,int x)
{
if(segs>sege||segs>qe||sege<qs) return;
if(segs>=qs && sege<=qe)
{
tree[node].addval = (tree[node].addval+x)%MOD;
tree[node].sum = (tree[node].sum + ((LL)(sege-segs+1)*x)%MOD)%MOD;
return;
}
int mid= segs+sege; mid /= 2;
if(tree[node].lazyset || tree[node].addval)
pushdown(node,segs,sege);
update_add(2*node,segs,mid,qs,qe,x);
update_add(2*node+1,mid+1,sege,qs,qe,x);
tree[node].combine(tree[2*node],tree[2*node+1]);
}
void update_mult(int node,int segs,int sege,int qs,int qe,LL x)
{
//cout<<" ua - node = "<<node<<" segs = "<<segs<<" sege = "<<sege<<" qs = "<<qs<<" qe = "<<qe<<" x = "<<x<<endl;
if(segs>sege||segs>qe||sege<qs) return;
if(segs>=qs && sege<=qe)
{
//tree[node].addval = (tree[node].addval * x)%MOD;
tree[node].sum = (tree[node].sum * x)%MOD;
tree[node].lazyMult = 1;
tree[node].lazyVal = x;
tree[node].addval = 0;
return;
}
int mid= segs+sege; mid /= 2;
if(tree[node].lazyMult || tree[node].addval)
pushdown(node,segs,sege);
update_mult(2*node,segs,mid,qs,qe,x);
update_mult(2*node+1,mid+1,sege,qs,qe,x);
tree[node].combine(tree[2*node],tree[2*node+1]);
}
//comm=0
void update_set(int node,int segs,int sege,int qs,int qe,LL x)
{
//cout<<" node = "<<node<<" segs = "<<segs<<" sege = "<<sege<<" qs = "<<qs<<" qe = "<<qe<<" x = "<<x<<endl;
if(segs>sege||segs>qe||sege<qs)
return;
if(segs>=qs && sege<=qe)
{
tree[node].lazyset= 1;
tree[node].setval=x;
tree[node].sum = ((LL)(sege-segs+1)*x)%MOD;
tree[node].addval = 0;
return;
}
if(tree[node].lazyset || tree[node].addval)
pushdown(node,segs,sege);
int mid= segs+sege;
mid /= 2;
update_set(2*node,segs,mid,qs,qe,x);
update_set(2*node+1,mid+1,sege,qs,qe,x);
tree[node].combine(tree[2*node],tree[2*node+1]);
}
int main()
{
int test = 1;
FOR(tt,1,test+1)
{
int n,q; INT(n); INT(q);
CLR(arr);
CLR(tree);
FOR(i,0,n)
LLD(arr[i]);
build_tree(1,0,n-1);
while(q--)
{
int comm; int l,r;
INT(comm); INT(l); INT(r);
if(comm==3)
{
//set x
LL x; LLD(x);
update_set(1,0,n-1,l-1,r-1,x);
}
else if(comm==1)
{
//add x
LL x; LLD(x);
update_add(1,0,n-1,l-1,r-1,x);
}
else if(comm==2)
{
//add x
LL x; LLD(x);
update_mult(1,0,n-1,l-1,r-1,x);
}
else if(comm==4)
{
LL ans = query(1,0,n-1,l-1,r-1);
PLLD(ans);
}
}
}
return 0;
}
答案 0 :(得分:0)
我认为问题在于下推功能中的代码块。
答案 1 :(得分:0)
当你有乘法时你如何设置子的addval为0.在初始化的情况下它是好的因为现在任何乘法和加法变得多余但不是乘法的情况。在乘法的情况下你不能这样做,因为你仍然要添加这个值。而且我认为加法和乘法的顺序也可能发挥作用。
答案 2 :(得分:0)
试试这个测试用例,你会发现你的错误:
4 10
1 3 4 5
1 1 2 1
4 1 4
2 1 3 4
4 1 4
3 2 4 2
4 1 4