这个程序从数组整数创建平衡二进制搜索树,然后按顺序打印该值(X.left,X,X.right)。任何改进该计划的建议都表示赞赏。
值得注意的是,还有其他几种遍历BST的方法。如 - 预购:X,X.left,X.right 下订单:X.left,X.right,X
注意#我最终在这个程序的用户的帮助下解决了这个问题。它需要更改 createMinimalBST 方法中的一些条件。
// we need to stop recursion there as one element exist
if (start == mid-1) {
}
// we need to stop recursion there as one element exist
if (end == mid+1) {
}
谢谢。
// import java.util.Arrays;
// import java.util.LinkedList;
import java.util.*;
class Node {
int key;
Node leftChild;
Node rightChild;
Node(int key) {
this.key = key;
}
Node() {
// null constructor
}
public String toString() {
return "\n"+key+" ";
}
}
public class BinaryTree {
Node root;
static int TWO_NODES_FOUND = 2;
static int ONE_NODE_FOUND = 1;
static int NO_NODES_FOUND = 0;
BinaryTree (){
root = null;
}
public void addNode(int key) {
Node newNode = new Node(key);
// If there is no root this becomes root
if (root == null) {
root = newNode;
}
else {
// Set root as the Node we will start
// with as we traverse the tree
Node focusNode = root;
Node parent;
while (true) {
parent = focusNode;
if (key < focusNode.key) {
focusNode = focusNode.leftChild;
if (focusNode == null) {
parent.leftChild = newNode;
return; // All Done
}
} // end of if
else {
focusNode = focusNode.rightChild;
if (focusNode == null) {
parent.rightChild = newNode;
return;
}
}
}
}
}
// get the height of binary tree
public int height(Node root) {
if (root == null)
return -1;
Node focusNode = root;
int leftHeight = focusNode.leftChild != null ? height( focusNode.leftChild) : 0;
int rightHeight = focusNode.rightChild != null ? height( focusNode.rightChild) : 0;
return 1 + Math.max(leftHeight, rightHeight);
}
// METHODS FOR THE TREE TRAVERSAL
// inOrderTraverseTree : i) X.left ii) X iii) X.right
public void inOrderTraverseTree(Node focusNode) {
if (focusNode != null) {
inOrderTraverseTree(focusNode.leftChild);
// System.out.println(focusNode);
System.out.print( focusNode );
inOrderTraverseTree(focusNode.rightChild);
}
// System.out.println();
}
// preOrderTraverseTree : i) X ii) X.left iii) X.right
public void preorderTraverseTree(Node focusNode) {
if (focusNode != null) {
System.out.println(focusNode);
preorderTraverseTree(focusNode.leftChild);
preorderTraverseTree(focusNode.rightChild);
}
}
// postOrderTraverseTree : i) X.left ii) X.right iii) X
public void postOrderTraverseTree(Node focusNode) {
if (focusNode != null) {
preorderTraverseTree(focusNode.leftChild);
preorderTraverseTree(focusNode.rightChild);
System.out.println(focusNode);
}
}
// get certain node from it's key
public Node findNode(int key) {
Node focusNode = root;
while (focusNode.key != key) {
if (key < focusNode.key) {
focusNode = focusNode.leftChild;
} else {
focusNode = focusNode.rightChild;
}
if (focusNode == null)
return null;
}
return focusNode;
}
public boolean remove(int key) {
Node focusNode = root;
Node parent = root;
boolean isItALeftChild = true;
// we will remove the focusNode
while (focusNode.key != key) {
parent = focusNode;
if (key < focusNode.key) {
isItALeftChild = true;
focusNode = focusNode.leftChild;
}
else {
isItALeftChild = false;
focusNode = focusNode.rightChild;
}
if (focusNode == null)
return false;
}
// no child
if (focusNode.leftChild == null && focusNode.rightChild == null) {
if (focusNode == root)
root = null;
else if (isItALeftChild)
parent.leftChild = null;
else
parent.rightChild = null;
}
// one child ( left child )
else if (focusNode.rightChild == null) {
if (focusNode == root)
root = focusNode.leftChild;
else if (isItALeftChild)
parent.leftChild = focusNode.leftChild;
else
parent.rightChild = focusNode.leftChild;
}
else if (focusNode.leftChild == null) {
if (focusNode == root)
root = focusNode.rightChild;
else if (isItALeftChild)
parent.leftChild = focusNode.rightChild;
else
parent.rightChild = focusNode.rightChild;
}
// two children exits
else {
// replacement is the smallest node in the right subtree
// we neeed to delete the focusNode
Node replacement = getReplacementNode(focusNode);
if (focusNode == root)
root = replacement;
else if (isItALeftChild)
parent.leftChild = replacement;
else
parent.rightChild = replacement;
replacement.leftChild = focusNode.leftChild;
}
return true;
}
public Node getReplacementNode(Node replacedNode) {
Node replacementParent = replacedNode;
Node replacement = replacedNode;
Node focusNode = replacedNode.rightChild;
// find the smallest node of the right subtree of the node to be deleted
while (focusNode != null) {
replacementParent = replacement;
replacement = focusNode;
focusNode = focusNode.leftChild;
}
// exit when the focusNode is null
// the replacement is the smallest of the right subtree
if (replacement != replacedNode.rightChild) {
replacementParent.leftChild = replacement.rightChild;
replacement.rightChild = replacedNode.rightChild;
}
return replacement;
}
private void createMinimalBST(int arr[], int start, int end, Node newNode){
if ( end <= start ) return;
int mid = (start + end) / 2;
newNode.key = arr[mid];
// System.out.println("new node = "+ newNode );
if (start <= mid-1) {
if ( start < mid-1){
newNode.leftChild = new Node();
createMinimalBST( arr, start, mid - 1, newNode.leftChild );
}
else {
newNode.leftChild = new Node();
newNode.leftChild.key = arr[start];
}
}
if ( mid+1 <= end ) {
if ( mid+1 < end){
newNode.rightChild = new Node();
createMinimalBST(arr, mid + 1, end, newNode.rightChild);
}
else {
newNode.rightChild = new Node();
newNode.rightChild.key = arr[end];
}
}
// System.out.println("left child = "+ newNode.leftChild +" "+ " right child = "+ newNode.rightChild);
}
public static int getHeight(Node root) {
if (root == null) {
return 0;
}
return Math.max(getHeight(root.leftChild), getHeight(root.rightChild)) + 1;
}
public static boolean isBalanced( Node root) {
if (root == null) {
return true;
}
int heightDiff = getHeight(root.leftChild) - getHeight(root.rightChild);
if (Math.abs(heightDiff) > 1) {
return false;
}
else {
return isBalanced(root.leftChild ) && isBalanced(root.rightChild );
}
}
public void createMinimalBST(int array[]) {
// Node n = new Node();
Arrays.sort(array);
root = new Node();
createMinimalBST(array, 0, array.length - 1, root);
}
// create linked list of the same level of the tree
public static ArrayList<LinkedList<Node>> createLevelLinkedList( Node root) {
ArrayList<LinkedList<Node>> result = new ArrayList<LinkedList<Node>>();
/* "Visit" the root */
LinkedList<Node> current = new LinkedList<Node>();
if ( root != null) {
current.add(root);
}
while ( current.size() > 0) {
result.add(current); // Add previous level
LinkedList<Node> parents = current; // Go to next level
current = new LinkedList<Node>();
for ( Node parent : parents) {
/* Visit the children */
if (parent.leftChild != null) {
current.add(parent.leftChild);
}
if (parent.rightChild != null) {
current.add(parent.rightChild );
}
}
}
return result;
}
// print values in the same level of the tree gradually
public static void printResult(ArrayList<LinkedList<Node>> result){
int depth = 0;
for(LinkedList<Node> entry : result) {
Iterator<Node> i = entry.listIterator();
System.out.print("Link list at depth " + depth + ":");
while(i.hasNext()){
System.out.print(" " + ((Node)i.next()).key );
}
System.out.println();
depth++;
}
}
// using a key, check whether the node is inside of the BST or not
public boolean isBST (int n){
if ( n == root.key ){
return true;
}
else {
Node focusNode = root;
Node parent;
while( focusNode != null){
parent = focusNode;
if (focusNode != null){
if (n < focusNode.key){
focusNode = focusNode.leftChild;
}
else {
focusNode = focusNode.rightChild;
}
}
if ( focusNode != null && n == focusNode.key ){
return true;
}
}
}
return false;
}
//
public Node getNode (int n){
if ( n == root.key ){
return root;
}
else {
Node focusNode = root;
Node parent;
while( focusNode != null){
parent = focusNode;
if (focusNode != null){
if (n < focusNode.key){
focusNode = focusNode.leftChild;
}
else {
focusNode = focusNode.rightChild;
}
}
if ( focusNode != null && n == focusNode.key ){
return focusNode;
}
}
}
return null;
}
// get the parent of using the key of certain node
public Node getParent (int n){
if ( !isBST (n)){
return null;
}
if ( n == root.key ){
return null;
}
else {
Node focusNode = root;
Node parent;
while( focusNode != null){
parent = focusNode;
if (focusNode != null){
if (n < focusNode.key){
focusNode = focusNode.leftChild;
}
else {
focusNode = focusNode.rightChild;
}
}
if ( focusNode != null && n == focusNode.key ){
return parent;
}
}
}
return null;
}
/* get in-order successive node of the certain node */
public Node inorderSucc( Node n) {
if (n == null) return null;
// Found right children -> return left most node of right subtree
if ( getParent(n.key) == null || n.rightChild != null) {
return leftMostChild( n.rightChild );
}
else {
Node q = n;
Node x = getParent(q.key);
// Go up until we’re on left instead of right
while (x != null && x.leftChild != q) {
q = x;
x = getParent(x.key);
}
return x;
}
}
/* get the left most/ smallest node of the sub tree of the certain node */
public Node leftMostChild( Node n) {
if (n == null) {
return null;
}
while (n.leftChild != null) {
n = n.leftChild;
}
return n;
}
// SECOOND SOLUTION TO FIND OUT THE COMMON ANCESTOR OF TWO NODES
public static boolean covers2( Node root, Node p) {
if (root == null) return false;
if (root == p) return true;
return covers2(root.leftChild , p) || covers2(root.rightChild , p);
}
public static Node commonAncestorHelper( Node root, Node p, Node q) {
if (root == null) {
return null;
}
boolean is_p_on_left = covers2(root.leftChild , p);
boolean is_q_on_left = covers2(root.leftChild , q);
if (is_p_on_left != is_q_on_left) { // Nodes are on different side
return root;
}
// nodes are the same sides
Node child_side = is_p_on_left ? root.leftChild : root.rightChild;
return commonAncestorHelper(child_side, p, q);
}
public static Node commonAncestor2( Node root, Node p, Node q) {
if (!covers2(root, p) || !covers2(root, q)) { // Error check - one node is not in tree
return null;
}
return commonAncestorHelper(root, p, q);
}
// END OF THE SECOND SOLUTION
// FIRST SOLUTION TO FIND OUT THE COMMON ANCESTOR OF TWO NODES
// Checks how many “special” nodes are located under this root
public static int covers( Node root, Node p, Node q) {
int ret = NO_NODES_FOUND;
if (root == null) return ret;
if (root == p || root == q)
ret += 1;
ret += covers(root.leftChild , p, q);
if(ret == TWO_NODES_FOUND) // Found p and q
return ret;
return ret + covers(root.rightChild , p, q);
}
public static Node commonAncestor( Node root, Node p, Node q) {
if (q == p && (root.leftChild == q || root.rightChild == q))
return root;
int nodesFromLeft = covers(root.leftChild, p, q); // Check left side
if ( nodesFromLeft == TWO_NODES_FOUND ) {
if(root.leftChild == p || root.leftChild == q)
return root.leftChild;
else return commonAncestor(root.leftChild , p, q);
}
else if (nodesFromLeft == ONE_NODE_FOUND) {
if (root == p) return p;
else if (root == q) return q;
}
int nodesFromRight = covers(root.rightChild, p, q); // Check right side
if(nodesFromRight == TWO_NODES_FOUND) {
if(root.rightChild == p || root.rightChild == q)
return root.rightChild;
else return commonAncestor(root.rightChild , p, q);
}
else if (nodesFromRight == ONE_NODE_FOUND) {
if (root == p) return p;
else if (root == q) return q;
}
if (nodesFromLeft == ONE_NODE_FOUND &&
nodesFromRight == ONE_NODE_FOUND) return root;
else return null;
}
// END OF THE FIRST SOLUTION
// METHODS FOR SUBTREE CHECK
// Check if T2 is subtree of T1
public static boolean containsTree( Node t1, Node t2) {
if (t2 == null)
return true; // The empty tree is a subtree of every tree.
else
return subTree(t1, t2);
}
/* Checks if the binary tree rooted at r1 contains the binary tree
* rooted at r2 as a subtree somewhere within it.
*/
public static boolean subTree( Node r1, Node r2) {
if (r1 == null)
return false; // big tree empty & subtree still not found.
if (r1.key == r2.key) {
if (matchTree(r1,r2)) return true;
}
return (subTree(r1.leftChild , r2) || subTree(r1.rightChild , r2));
}
/*
Checks if the binary tree rooted at r1 contains the
binary tree rooted at r2 as a subtree starting at r1.
*/
public static boolean matchTree( Node r1, Node r2) {
if (r2 == null && r1 == null)
return true; // nothing left in the subtree
if (r1 == null || r2 == null)
return false; // big tree empty & subtree still not found
if (r1.key != r2.key)
return false; // data doesn’t match
return (matchTree(r1.leftChild, r2.leftChild) &&
matchTree(r1.rightChild , r2.rightChild ));
}
// END OF SUBTREE CHECK
/* Creates tree by mapping the array left to right, top to bottom. */
public Node createTreeFromArray(int[] array) {
if (array.length > 0) {
root = new Node(array[0]);
java.util.Queue<Node> queue = new java.util.LinkedList<Node>();
queue.add(root);
boolean done = false;
int i = 1;
while (!done) {
Node r = (Node) queue.element();
if (r.leftChild == null) {
r.leftChild = new Node(array[i]);
i++;
queue.add(r.leftChild);
}
else if (r.rightChild == null) {
r.rightChild = new Node(array[i]);
i++;
queue.add(r.rightChild );
}
else {
queue.remove();
}
if (i == array.length)
done = true;
}
return root;
}
else {
return null;
}
}
// ALGORITHM TO FIND ALL THE PATHS TO CERTAIN SUM VALUE
public static void findSum( Node node, int sum, int[] path, int level) {
if (node == null) {
return;
}
/* Insert current node into path */
path[level] = node.key;
int t = 0;
for (int i = level; i >= 0; i--){
t += path[i];
if (t == sum) {
print(path, i, level);
}
}
findSum( node.leftChild, sum, path, level + 1);
findSum( node.rightChild , sum, path, level + 1);
/* Remove current node from path. Not strictly necessary, since we would
* ignore this value, but it's good practice.
*/
path[level] = Integer.MIN_VALUE;
}
public static int depth( Node node) {
if (node == null) {
return 0;
}
else {
return 1 + Math.max(depth(node.leftChild), depth(node.rightChild));
}
}
public static void findSum( Node node, int sum) {
int depth = depth(node);
int[] path = new int[depth];
findSum(node, sum, path, 0);
}
private static void print(int[] path, int start, int end) {
for (int i = start; i <= end; i++) {
System.out.print(path[i] + " ");
}
System.out.println();
}
// END PATH ALGORITHM
public static void main(String[] args) {
int[] myArr = {5, 3, 1, 4, 8, 2, 6};
// int[] myArr = { 10,32,63,44,115,66,7,18,999 }; // sortedArrayToBST
BinaryTree myTr = new BinaryTree();
for( int j=0; j < myArr.length; j++){
myTr.addNode(myArr[j]);
}
// Node n = BinaryTree.createMinimalBST(myArr);
/*question 4-3
create a binary tree with minimal height ( balanced tree )*/
/*myTr.createMinimalBST(myArr);*/
// System.out.println("The root is = "+myTr.root);
myTr.inOrderTraverseTree(myTr.root);
System.out.println("\n\n");
/*get the height of the binary search tree*/
/*System.out.println( "the height of the tree is = "+myTr.height(myTr.root));
System.out.println("\n\n");*/
/*question 4-1
check whether the tree is balanced */
/*boolean isBalanced = myTr.isBalanced(myTr.root);
if (isBalanced) {
System.out.println("The tree is balanced \n\n");
}*/
/*question 4-4
create a linked list of all the nodes in the same level of the BST
breadth first search ( BFS ) is used for implementation */
/*ArrayList<LinkedList<Node>> list = createLevelLinkedList(myTr.root);
printResult(list);*/
/* ge parent of the elements */
/*
for(int j = 0; j < myArr.length ; j++){
int checkParent = myArr[j];
System.out.println("the parent of "+ checkParent +" is = "+ myTr.getParent( checkParent) );
}
*/
// using an integer value, get the node that contains that int element
/*Node myNode = myTr.getNode(44);
System.out.println("Get my node = "+ myNode.key ); */
/* get in-order successive node of certain node */
/*int getInOrderSuccessive = 44 ;
System.out.println( myTr.inorderSucc( myTr.getNode( getInOrderSuccessive)) );*/
/* question 4-6
get the first common ancestor of two nodes */
/*int firstNodeInteger = 7;
int secondNodeInteger = 66;
// try the first solution
System.out.println( myTr.commonAncestor( myTr.root, myTr.getNode(firstNodeInteger), myTr.getNode(secondNodeInteger) ));
// try the second solution
System.out.println( myTr.commonAncestor2( myTr.root, myTr.getNode(firstNodeInteger), myTr.getNode(secondNodeInteger) ));
*/
/* question 4-7 */
/* check whether one tree is sub-set of the another tree */
/*
int[] array1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};
int[] array2 = {2, 4, 5, 8, 9, 10, 11};
Node t1 = myTr.createTreeFromArray(array1);
Node t2 = myTr.createTreeFromArray(array2);
if (containsTree(t1, t2))
System.out.println("t2 is a subtree of t1");
else
System.out.println("t2 is not a subtree of t1");
int[] array3 = {1, 2, 3};
Node t3 = myTr.createTreeFromArray(array1);
Node t4 = myTr.createTreeFromArray(array3);
if (containsTree(t3, t4))
System.out.println("t4 is a subtree of t3");
else
System.out.println("t4 is not a subtree of t3");
*/
/* question 4-8
algorithm to get all the paths equal to given value */
/*int testValue = 7;
myTr.findSum( myTr.root, testValue );*/
}
}
答案 0 :(得分:2)
只需使用root
方法中的bbst()
,而不是声明n
。
public void bbst(int array[]) {
root = new TreeNode();
balancedBST(array, 0, array.length - 1, root);
}
答案 1 :(得分:1)
我在代码中看不到balancedBST
。您的意思是方法createMinimalBST(int arr[], int start, int end, Node newNode)
?
如果是,那么基于此调用
createMinimalBST(array, 0, array.length - 1, root)
我推断出start
和end
参数是要转换为子树的子阵列的包含索引。对于单项数组,您有start == end
- 但是该方法的第一行将丢弃该项:
if ( end <= start ) return;
为您留下一个没有分配密钥的新节点。
整个方法过于复杂,因此难以理解。吻!例如:
private Node createBalancedTree(int arr[], int start, int end){
if ( end < start ) return null; // empty array -> empty tree
int mid = start + (end - start) / 2; // avoid overflow
// create a tip node
Node node = new Node( arr[mid] );
// convert remaining subarrays (if any) into subtrees
node.leftChild = createBalancedTree( arr, start, mid - 1 );
node.rightChild = createBalancedTree( arr, mid + 1, end );
return node;
}
public void createBalancedTree( int array[] ) {
// convert the array into a tree and plant it in this
root = createBalancedTree( array, 0, array.length - 1 );
}
但请注意,我从方法名称中删除了“BS”。例程从不检查数组项的顺序,因此生成的树是平衡的,但如果数组未排序则可能是NOT-BST!
如果希望生成的树具有正确的排序,则需要在“build-a-tree”调用之前对数组进行排序,或者必须使用addNode(int key)
方法逐个添加节点。 / p>
如果你想建立一个平衡的BST,那么你需要一个新的addNodeBalanced
方法......
(您的代码存在很多其他问题,就像永远重复出现的,但我将此限制在您在问题中指出的部分。)height(Node root)
修改强>
关于height(Node root)
的说明被证明是错误的。