双立方插值给出了错误的结果

时间:2015-07-01 19:36:01

标签: image-processing bicubic

我正在尝试使用双三次插值进行图像变换,例如缩放和倾斜,但图像输出似乎不准确。插值像素有时溢出超过255。

以下是代码:

#include <algorithm>
#include <sal.h>
#define ASSERT _ASSERTE 
template<typename T>
class bicubic_sampler
{
    // use to offset into int 4x4 array to get individual channel 
    #pragma region constants
    static unsigned constexpr x00 = 0;
    static unsigned constexpr x01 = 4;
    static unsigned constexpr x02 = 8;
    static unsigned constexpr x03 = 12;
    static unsigned constexpr x10 = 16;
    static unsigned constexpr x11 = 20;
    static unsigned constexpr x12 = 24;
    static unsigned constexpr x13 = 28;
    static unsigned constexpr x20 = 32;
    static unsigned constexpr x21 = 36;
    static unsigned constexpr x22 = 40;
    static unsigned constexpr x23 = 44;
    static unsigned constexpr x30 = 48;
    static unsigned constexpr x31 = 52;
    static unsigned constexpr x32 = 56;
    static unsigned constexpr x33 = 60;
    #pragma endregion

    T   a00, a01, a02, a03,
        a10, a11, a12, a13,
        a20, a21, a22, a23,
        a30, a31, a32, a33;

public:

    void sample(_In_ UINT32(&pix)[4][4], _In_ T x, _In_ T y, _Inout_ BYTE(&output)[4])
    {
        auto channel_count = 3u; // skip alpha
        for (auto c = 0; c != channel_count; ++c)
        {
            auto p = reinterpret_cast<BYTE*>(pix) + c;

            a00 = p[x11];
            a01 = -.5*p[x10] + .5*p[x12];
            a02 = p[x10] - 2.5*p[x11] + 2 * p[x12] - .5*p[x13];
            a03 = -.5*p[x10] + 1.5*p[x11] - 1.5*p[x12] + .5*p[x13];
            a10 = -.5*p[x01] + .5*p[x21];
            a11 = .25*p[x00] - .25*p[x02] - .25*p[x20] + .25*p[x22];
            a12 = -.5*p[x00] + 1.25*p[x01] - p[x02] + .25*p[x03] + .5*p[x20] - 1.25*p[x21] + p[x22] - .25*p[x23];
            a13 = .25*p[x00] - .75*p[x01] + .75*p[x02] - .25*p[x03] - .25*p[x20] + .75*p[x21] - .75*p[x22] + .25*p[x23];
            a20 = p[x01] - 2.5*p[x11] + 2 * p[x21] - .5*p[x31];
            a21 = -.5*p[x00] + .5*p[x02] + 1.25*p[x10] - 1.25*p[x12] - p[x20] + p[x22] + .25*p[x30] - .25*p[x32];
            a22 = p[x00] - 2.5*p[x01] + 2 * p[x02] - .5*p[x03] - 2.5*p[x10] + 6.25*p[x11] - 5 * p[x12] + 1.25*p[x13] + 2 * p[x20] - 5 * p[x21] + 4 * p[x22] - p[x23] - .5*p[x30] + 1.25*p[x31] - p[x32] + .25*p[x33];
            a23 = -.5*p[x00] + 1.5*p[x01] - 1.5*p[x02] + .5*p[x03] + 1.25*p[x10] - 3.75*p[x11] + 3.75*p[x12] - 1.25*p[x13] - p[x20] + 3 * p[x21] - 3 * p[x22] + p[x23] + .25*p[x30] - .75*p[x31] + .75*p[x32] - .25*p[x33];
            a30 = -.5*p[x01] + 1.5*p[x11] - 1.5*p[x21] + .5*p[x31];
            a31 = .25*p[x00] - .25*p[x02] - .75*p[x10] + .75*p[x12] + .75*p[x20] - .75*p[x22] - .25*p[x30] + .25*p[x32];
            a32 = -.5*p[x00] + 1.25*p[x01] - p[x02] + .25*p[x03] + 1.5*p[x10] - 3.75*p[x11] + 3 * p[x12] - .75*p[x13] - 1.5*p[x20] + 3.75*p[x21] - 3 * p[x22] + .75*p[x23] + .5*p[x30] - 1.25*p[x31] + p[x32] - .25*p[x33];
            a33 = .25*p[x00] - .75*p[x01] + .75*p[x02] - .25*p[x03] - .75*p[x10] + 2.25*p[x11] - 2.25*p[x12] + .75*p[x13] + .75*p[x20] - 2.25*p[x21] + 2.25*p[x22] - .75*p[x23] - .25*p[x30] + .75*p[x31] - .75*p[x32] + .25*p[x33];

            auto x2 = x * x;
            auto x3 = x2 * x;
            auto y2 = y * y;
            auto y3 = y2 * y;

            auto dd = (a00 + a01 * y + a02 * y2 + a03 * y3) +
                (a10 + a11 * y + a12 * y2 + a13 * y3) * x +
                (a20 + a21 * y + a22 * y2 + a23 * y3) * x2 +
                (a30 + a31 * y + a32 * y2 + a33 * y3) * x3;
            //ASSERT(dd <= 0xff);  // this is overflowing beyond 255

            auto finalValue = (std::min)(255.0, dd);
            output[c] = static_cast<BYTE>(finalValue);
        }
    }
};

template<typename T, typename Matrix>
void transform_pixels(_In_  T* src, _Inout_ T* dest, _In_ const int width, _In_ const int height, _In_ const Matrix & mat)
{

    auto bc_sampler = bicubic_sampler<double>{};

    const ptrdiff_t channelCount = 4;

    for (auto y = 0; y != height; ++y)
    {
        for (auto x = 0; x != width; ++x)
        {
            auto p0 = point<double>(x, y);   //original point
            auto p = transform_point(mat, p0);  // calculate the tranform point after applying matrix mul, like scale, skewing, rotation

            auto pf = point < std::ptrdiff_t >(pt_floor(p));
            auto frac = point < double >{ p.x - pf.x, p.y - pf.y };

            if (pf.x < 0 || pf.y < 0 || pf.x >= width || pf.y >= height)
            {
                continue;
            }

            BYTE mp[4]{};  // one pixel transformed output

            auto loc = (src + (pf.y * width + pf.x) * channelCount);

            auto stride = width * channelCount;
            if (pf.x - 1 >= 0 && pf.y - 1 >= 0 && pf.x + 2 < width && pf.y + 2 < width)
            {
                UINT32 neig4x4[4][4] = {};

                // store the 16 neighbours
                neig4x4[0][0] = *reinterpret_cast<INT32*>(loc - (1 * stride) - channelCount);
                neig4x4[0][1] = *reinterpret_cast<INT32*>(loc - (1 * stride));
                neig4x4[0][2] = *reinterpret_cast<INT32*>(loc - (1 * stride) + channelCount);
                neig4x4[0][3] = *reinterpret_cast<INT32*>(loc - (1 * stride) + 2 * channelCount);

                neig4x4[1][0] = *reinterpret_cast<INT32*>(loc + (1 * stride) - channelCount);
                neig4x4[1][1] = *reinterpret_cast<INT32*>(loc + (1 * stride));
                neig4x4[1][2] = *reinterpret_cast<INT32*>(loc + (1 * stride) + channelCount);
                neig4x4[1][3] = *reinterpret_cast<INT32*>(loc + (1 * stride) + 2 * channelCount);

                neig4x4[2][0] = *reinterpret_cast<INT32*>(loc + (2 * stride) - channelCount);
                neig4x4[2][1] = *reinterpret_cast<INT32*>(loc + (2 * stride));
                neig4x4[2][2] = *reinterpret_cast<INT32*>(loc + (2 * stride) + channelCount);
                neig4x4[2][3] = *reinterpret_cast<INT32*>(loc + (2 * stride) + 2 * channelCount);

                neig4x4[3][0] = *reinterpret_cast<INT32*>(loc + (3 * stride) - channelCount);
                neig4x4[3][1] = *reinterpret_cast<INT32*>(loc + (3 * stride));
                neig4x4[3][2] = *reinterpret_cast<INT32*>(loc + (3 * stride) + channelCount);
                neig4x4[3][3] = *reinterpret_cast<INT32*>(loc + (3 * stride) + 2 * channelCount);

                // mp is interoplated pixel 
                bc_sampler.sample(neig4x4, frac.x, frac.y, mp);

                auto dst = reinterpret_cast<void*>(dest + (y * width + x) * channelCount);  // at what location in dest to copy pixel from the source
                memcpy_s(dst, channelCount, mp, channelCount);
            }
            else
            {
                auto dst = reinterpret_cast<void*>(dest + (y * width + x) * channelCount);
                memcpy_s(dst, 4, loc, 4);  // copy the original 
            }

        } // for x
    } // for y
}

输出用于缩放转换

双线性输出: http://i.stack.imgur.com/gVeoF.jpg

双立方输出 http://i.stack.imgur.com/HDKsh.jpg

0 个答案:

没有答案