我有以下数据框。
df.head(30)
struct_id resNum score_type_name score_value
0 4294967297 1 omega 0.064840
1 4294967297 1 fa_dun 2.185618
2 4294967297 1 fa_dun_dev 0.000027
3 4294967297 1 fa_dun_semi 2.185591
4 4294967297 1 ref -1.191180
5 4294967297 2 rama -0.795161
6 4294967297 2 omega 0.222345
7 4294967297 2 fa_dun 1.378923
8 4294967297 2 fa_dun_dev 0.028560
9 4294967297 2 fa_dun_rot 1.350362
10 4294967297 2 p_aa_pp -0.442467
11 4294967297 2 ref 0.249477
12 4294967297 3 rama 0.267443
13 4294967297 3 omega 0.005106
14 4294967297 3 fa_dun 0.020352
15 4294967297 3 fa_dun_dev 0.025507
16 4294967297 3 fa_dun_rot -0.005156
17 4294967297 3 p_aa_pp -0.096847
18 4294967297 3 ref 0.979644
19 4294967297 4 rama -1.403292
20 4294967297 4 omega 0.212160
21 4294967297 4 fa_dun 4.218029
22 4294967297 4 fa_dun_dev 0.003712
23 4294967297 4 fa_dun_semi 4.214317
24 4294967297 4 p_aa_pp -0.462765
25 4294967297 4 ref -1.960940
26 4294967297 5 rama -0.600053
27 4294967297 5 omega 0.061867
28 4294967297 5 fa_dun 3.663050
29 4294967297 5 fa_dun_dev 0.004953
根据数据透视文档,我应该能够使用pivot函数在score_type_name上重新整形。
df.pivot(columns='score_type_name',values='score_value',index=['struct_id','resNum'])
但是,我得到以下内容。
但是,pivot_table函数似乎有效:
pivoted = df.pivot_table(columns='score_type_name',
values='score_value',
index=['struct_id','resNum'])
但至少对我来说,它并不适合进一步分析。我希望它只将struct_id,resNum和score_type_name作为列,而不是将score_type_name堆叠在其他列的顶部。另外,我希望struct_id适用于每一行,而不是像连接表一样聚合在连接的行中。
所以有人能告诉我如何获得一个好的Dataframe,就像我想使用pivot一样吗?此外,从文档中,我无法说明为什么pivot_table工作和枢轴没有。如果我看第一个数据透视示例,它看起来就像我需要的那样。
P.S。 我确实发了一个关于这个问题的问题,但我在演示输出方面表现不佳,我删除了它并再次尝试使用ipython notebook。如果你看到这两次,我会提前道歉。
Here is the notebook for your full reference
编辑 - 我想要的结果看起来像这样(用excel制作):
StructId resNum pdb_residue_number chain_id name3 fa_dun fa_dun_dev fa_dun_rot fa_dun_semi omega p_aa_pp rama ref
4294967297 1 99 A ASN 2.1856 0.0000 2.1856 0.0648 -1.1912
4294967297 2 100 A MET 1.3789 0.0286 1.3504 0.2223 -0.4425 -0.7952 0.2495
4294967297 3 101 A VAL 0.0204 0.0255 -0.0052 0.0051 -0.0968 0.2674 0.9796
4294967297 4 102 A GLU 4.2180 0.0037 4.2143 0.2122 -0.4628 -1.4033 -1.9609
4294967297 5 103 A GLN 3.6630 0.0050 3.6581 0.0619 -0.2759 -0.6001 -1.5172
4294967297 6 104 A MET 1.5175 0.2206 1.2968 0.0504 -0.3758 -0.7419 0.2495
4294967297 7 105 A HIS 3.6987 0.0184 3.6804 0.0547 0.4019 -0.1489 0.3883
4294967297 8 106 A THR 0.1048 0.0134 0.0914 0.0003 -0.7963 -0.4033 0.2013
4294967297 9 107 A ASP 2.3626 0.0005 2.3620 0.0521 0.1955 -0.3499 -1.6300
4294967297 10 108 A ILE 1.8447 0.0270 1.8176 0.0971 0.1676 -0.4071 1.0806
4294967297 11 109 A ILE 0.1276 0.0092 0.1183 0.0208 -0.4026 -0.0075 1.0806
4294967297 12 110 A SER 0.2921 0.0342 0.2578 0.0342 -0.2426 -1.3930 0.1654
4294967297 13 111 A LEU 0.6483 0.0019 0.6464 0.0845 -0.3565 -0.2356 0.7611
4294967297 14 112 A TRP 2.5965 0.1507 2.4457 0.5143 -0.1370 -0.5373 1.2341
4294967297 15 113 A ASP 2.6448 0.1593 0.0510 -0.5011
答案 0 :(得分:43)
对于仍然对byte bytes[] = {0x04,0x08,0x0F,0x66,(byte)(0x99 & 0xFF),0x41,0x52,0x43,0x55,(byte)(0xAA & 0xFF)};
和pivot
之间的区别感兴趣的人,主要有两点不同:
pivot_table
是pivot_table
的一般化,可以处理一个数据透视索引/列对的重复值。具体来说,您可以使用关键字参数pivot
为pivot_table
提供聚合函数列表。 aggfunc
的默认aggfunc
为pivot_table
。numpy.mean
还支持将多列用于数据透视表的索引和列。将自动为您生成分层索引。参考:pivot
和pivot_table
答案 1 :(得分:8)
我不确定我理解,但我会尝试一下。我通常使用stack / unstack而不是pivot,这更接近你想要的吗?
df.set_index(['struct_id','resNum','score_type_name']).unstack()
score_value
score_type_name fa_dun fa_dun_dev fa_dun_rot fa_dun_semi omega
struct_id resNum
4294967297 1 2.185618 0.000027 NaN 2.185591 0.064840
2 1.378923 0.028560 1.350362 NaN 0.222345
3 0.020352 0.025507 -0.005156 NaN 0.005106
4 4.218029 0.003712 NaN 4.214317 0.212160
5 3.663050 0.004953 NaN NaN 0.061867
score_type_name p_aa_pp rama ref
struct_id resNum
4294967297 1 NaN NaN -1.191180
2 -0.442467 -0.795161 0.249477
3 -0.096847 0.267443 0.979644
4 -0.462765 -1.403292 -1.960940
5 NaN -0.600053 NaN
我不确定为什么你的支点不起作用(有点似乎我应该这样,但我可能是错的),但它似乎确实有用(或者至少没有给出错误)如果我离开' struct_id'。当然,对于完整数据集来说,这并不是一个有用的解决方案,在这个数据集中,你有多个不同的值来构建' struct_id'。
df.pivot(columns='score_type_name',values='score_value',index='resNum')
score_type_name fa_dun fa_dun_dev fa_dun_rot fa_dun_semi omega
resNum
1 2.185618 0.000027 NaN 2.185591 0.064840
2 1.378923 0.028560 1.350362 NaN 0.222345
3 0.020352 0.025507 -0.005156 NaN 0.005106
4 4.218029 0.003712 NaN 4.214317 0.212160
5 3.663050 0.004953 NaN NaN 0.061867
score_type_name p_aa_pp rama ref
resNum
1 NaN NaN -1.191180
2 -0.442467 -0.795161 0.249477
3 -0.096847 0.267443 0.979644
4 -0.462765 -1.403292 -1.960940
5 NaN -0.600053 NaN
编辑添加: reset_index()
将从多索引(分层)转换为更扁平的样式。列名称中仍然存在一些层次结构,有时最简单的方法就是df.columns=['var1','var2',...]
,但如果进行一些搜索,有更复杂的方法。
df.set_index(['struct_id','resNum','score_type_name']).unstack().reset_index()
struct_id resNum score_value
score_type_name fa_dun fa_dun_dev fa_dun_rot
0 4294967297 1 2.185618 0.000027 NaN
1 4294967297 2 1.378923 0.028560 1.350362
2 4294967297 3 0.020352 0.025507 -0.005156
3 4294967297 4 4.218029 0.003712 NaN
4 4294967297 5 3.663050 0.004953 NaN
答案 2 :(得分:5)
我稍微调试了一下。
在内部,他们都使用reset_index()/ stack()/ unstack()来完成这项工作。
我认为,pivot()只是简单用法的捷径。
答案 3 :(得分:5)
另一个警告:
pivot_table
只允许数字类型为“values =”,而pivot
将字符串类型设为“values =”。
答案 4 :(得分:3)
要将从pivot_table
调用中获得的数据帧转换为您想要的格式:
pivoted.columns.name=None ## remove the score_type_name
result = pivoted.reset_index() ## puts index columns back into dataframe body
答案 5 :(得分:2)
pivot()
用于透视而无聚集。因此,它不能处理一个索引/列对的重复值。
由于您的index=['struct_id','resNum']
在这里有多个重复项,因此数据透视不起作用。
但是,pivot_table
之所以有用,是因为它将通过汇总重复值来处理它们。
答案 6 :(得分:0)
给定的代码段可能会帮助您进一步扁平化数据框的外观
df.set_index(['struct_id','resNum','score_type_name']).unstack().reset_index()
df.loc[:,['struct_id','resNum','fa_dun','fa_dun_dev','fa_dun_rot']]
答案 7 :(得分:0)
在调用数据透视表之前,我们需要确保我们的数据没有指定列的行具有重复值。
具有重复给定的数据点
Index contains duplicate entries, cannot reshape
如果不能确保这一点,则可能必须使用 pivot_table 方法。
请找到下面的链接以获得更详细的说明