熊猫:pivot和pivot_table之间的区别。为什么只有pivot_table工作?

时间:2015-06-21 01:07:30

标签: python pandas pivot

我有以下数据框。

df.head(30)

     struct_id  resNum score_type_name  score_value
0   4294967297       1           omega     0.064840
1   4294967297       1          fa_dun     2.185618
2   4294967297       1      fa_dun_dev     0.000027
3   4294967297       1     fa_dun_semi     2.185591
4   4294967297       1             ref    -1.191180
5   4294967297       2            rama    -0.795161
6   4294967297       2           omega     0.222345
7   4294967297       2          fa_dun     1.378923
8   4294967297       2      fa_dun_dev     0.028560
9   4294967297       2      fa_dun_rot     1.350362
10  4294967297       2         p_aa_pp    -0.442467
11  4294967297       2             ref     0.249477
12  4294967297       3            rama     0.267443
13  4294967297       3           omega     0.005106
14  4294967297       3          fa_dun     0.020352
15  4294967297       3      fa_dun_dev     0.025507
16  4294967297       3      fa_dun_rot    -0.005156
17  4294967297       3         p_aa_pp    -0.096847
18  4294967297       3             ref     0.979644
19  4294967297       4            rama    -1.403292
20  4294967297       4           omega     0.212160
21  4294967297       4          fa_dun     4.218029
22  4294967297       4      fa_dun_dev     0.003712
23  4294967297       4     fa_dun_semi     4.214317
24  4294967297       4         p_aa_pp    -0.462765
25  4294967297       4             ref    -1.960940
26  4294967297       5            rama    -0.600053
27  4294967297       5           omega     0.061867
28  4294967297       5          fa_dun     3.663050
29  4294967297       5      fa_dun_dev     0.004953

根据数据透视文档,我应该能够使用pivot函数在score_type_name上重新整形。

df.pivot(columns='score_type_name',values='score_value',index=['struct_id','resNum'])

但是,我得到以下内容。

enter image description here

但是,pivot_table函数似乎有效:

pivoted = df.pivot_table(columns='score_type_name',
                         values='score_value',
                         index=['struct_id','resNum'])

enter image description here

但至少对我来说,它并不适合进一步分析。我希望它只将struct_id,resNum和score_type_name作为列,而不是将score_type_name堆叠在其他列的顶部。另外,我希望struct_id适用于每一行,而不是像连接表一样聚合在连接的行中。

所以有人能告诉我如何获得一个好的Dataframe,就像我想使用pivot一样吗?此外,从文档中,我无法说明为什么pivot_table工作和枢轴没有。如果我看第一个数据透视示例,它看起来就像我需要的那样。

P.S。 我确实发了一个关于这个问题的问题,但我在演示输出方面表现不佳,我删除了它并再次尝试使用ipython notebook。如果你看到这两次,我会提前道歉。

Here is the notebook for your full reference

编辑 - 我想要的结果看起来像这样(用excel制作):

StructId    resNum  pdb_residue_number  chain_id    name3   fa_dun  fa_dun_dev  fa_dun_rot  fa_dun_semi omega   p_aa_pp rama    ref
4294967297  1   99  A   ASN 2.1856  0.0000      2.1856  0.0648          -1.1912
4294967297  2   100 A   MET 1.3789  0.0286  1.3504      0.2223  -0.4425 -0.7952 0.2495
4294967297  3   101 A   VAL 0.0204  0.0255  -0.0052     0.0051  -0.0968 0.2674  0.9796
4294967297  4   102 A   GLU 4.2180  0.0037      4.2143  0.2122  -0.4628 -1.4033 -1.9609
4294967297  5   103 A   GLN 3.6630  0.0050      3.6581  0.0619  -0.2759 -0.6001 -1.5172
4294967297  6   104 A   MET 1.5175  0.2206  1.2968      0.0504  -0.3758 -0.7419 0.2495
4294967297  7   105 A   HIS 3.6987  0.0184      3.6804  0.0547  0.4019  -0.1489 0.3883
4294967297  8   106 A   THR 0.1048  0.0134  0.0914      0.0003  -0.7963 -0.4033 0.2013
4294967297  9   107 A   ASP 2.3626  0.0005      2.3620  0.0521  0.1955  -0.3499 -1.6300
4294967297  10  108 A   ILE 1.8447  0.0270  1.8176      0.0971  0.1676  -0.4071 1.0806
4294967297  11  109 A   ILE 0.1276  0.0092  0.1183      0.0208  -0.4026 -0.0075 1.0806
4294967297  12  110 A   SER 0.2921  0.0342  0.2578      0.0342  -0.2426 -1.3930 0.1654
4294967297  13  111 A   LEU 0.6483  0.0019  0.6464      0.0845  -0.3565 -0.2356 0.7611
4294967297  14  112 A   TRP 2.5965  0.1507      2.4457  0.5143  -0.1370 -0.5373 1.2341
4294967297  15  113 A   ASP 2.6448  0.1593          0.0510      -0.5011 

8 个答案:

答案 0 :(得分:43)

对于仍然对byte bytes[] = {0x04,0x08,0x0F,0x66,(byte)(0x99 & 0xFF),0x41,0x52,0x43,0x55,(byte)(0xAA & 0xFF)}; pivot之间的区别感兴趣的人,主要有两点不同:

  • pivot_tablepivot_table的一般化,可以处理一个数据透视索引/列对的重复值。具体来说,您可以使用关键字参数pivotpivot_table提供聚合函数列表。 aggfunc的默认aggfuncpivot_table
  • numpy.mean还支持将多列用于数据透视表的索引和列。将自动为您生成分层索引。

参考:pivotpivot_table

答案 1 :(得分:8)

我不确定我理解,但我会尝试一下。我通常使用stack / unstack而不是pivot,这更接近你想要的吗?

df.set_index(['struct_id','resNum','score_type_name']).unstack()

                  score_value                                              
score_type_name        fa_dun fa_dun_dev fa_dun_rot fa_dun_semi     omega   
struct_id  resNum                                                           
4294967297 1         2.185618   0.000027        NaN    2.185591  0.064840   
           2         1.378923   0.028560   1.350362         NaN  0.222345   
           3         0.020352   0.025507  -0.005156         NaN  0.005106   
           4         4.218029   0.003712        NaN    4.214317  0.212160   
           5         3.663050   0.004953        NaN         NaN  0.061867   


score_type_name     p_aa_pp      rama       ref  
struct_id  resNum                                
4294967297 1            NaN       NaN -1.191180  
           2      -0.442467 -0.795161  0.249477  
           3      -0.096847  0.267443  0.979644  
           4      -0.462765 -1.403292 -1.960940  
           5            NaN -0.600053       NaN  

我不确定为什么你的支点不起作用(有点似乎我应该这样,但我可能是错的),但它似乎确实有用(或者至少没有给出错误)如果我离开' struct_id'。当然,对于完整数据集来说,这并不是一个有用的解决方案,在这个数据集中,你有多个不同的值来构建' struct_id'。

df.pivot(columns='score_type_name',values='score_value',index='resNum')

score_type_name    fa_dun  fa_dun_dev  fa_dun_rot  fa_dun_semi     omega  
resNum                                                                     
1                2.185618    0.000027         NaN     2.185591  0.064840   
2                1.378923    0.028560    1.350362          NaN  0.222345   
3                0.020352    0.025507   -0.005156          NaN  0.005106   
4                4.218029    0.003712         NaN     4.214317  0.212160   
5                3.663050    0.004953         NaN          NaN  0.061867   

score_type_name   p_aa_pp      rama       ref  
resNum                                         
1                     NaN       NaN -1.191180  
2               -0.442467 -0.795161  0.249477  
3               -0.096847  0.267443  0.979644  
4               -0.462765 -1.403292 -1.960940  
5                     NaN -0.600053       NaN  

编辑添加: reset_index()将从多索引(分层)转换为更扁平的样式。列名称中仍然存在一些层次结构,有时最简单的方法就是df.columns=['var1','var2',...],但如果进行一些搜索,有更复杂的方法。

df.set_index(['struct_id','resNum','score_type_name']).unstack().reset_index()

                  struct_id resNum score_value                            
score_type_name                         fa_dun fa_dun_dev fa_dun_rot   
0                4294967297      1    2.185618   0.000027        NaN   
1                4294967297      2    1.378923   0.028560   1.350362   
2                4294967297      3    0.020352   0.025507  -0.005156   
3                4294967297      4    4.218029   0.003712        NaN   
4                4294967297      5    3.663050   0.004953        NaN   

答案 2 :(得分:5)

我稍微调试了一下。

  • DataFrame.pivot()和DataFrame.pivot_table()是不同的。
  • pivot()不接受索引列表。
  • pivot_table()接受。

在内部,他们都使用reset_index()/ stack()/ unstack()来完成这项工作。

我认为,

pivot()只是简单用法的捷径。

答案 3 :(得分:5)

另一个警告:

pivot_table只允许数字类型为“values =”,而pivot将字符串类型设为“values =”。

答案 4 :(得分:3)

要将从pivot_table调用中获得的数据帧转换为您想要的格式:

pivoted.columns.name=None  ## remove the score_type_name
result = pivoted.reset_index()  ## puts index columns back into dataframe body

答案 5 :(得分:2)

pivot()用于透视而无聚集。因此,它不能处理一个索引/列对的重复值。

由于您的index=['struct_id','resNum']在这里有多个重复项,因此数据透视不起作用。

但是,pivot_table之所以有用,是因为它将通过汇总重复值来处理它们。

答案 6 :(得分:0)

给定的代码段可能会帮助您进一步扁平化数据框的外观

df.set_index(['struct_id','resNum','score_type_name']).unstack().reset_index()
df.loc[:,['struct_id','resNum','fa_dun','fa_dun_dev','fa_dun_rot']]

答案 7 :(得分:0)

在调用数据透视表之前,我们需要确保我们的数据没有指定列行具有重复值

具有重复给定的数据点

Index contains duplicate entries, cannot reshape

如果不能确保这一点,则可能必须使用 pivot_table 方法。

请找到下面的链接以获得更详细的说明

https://nikgrozev.com/2015/07/01/reshaping-in-pandas-pivot-pivot-table-stack-and-unstack-explained-with-pictures/