我有一个熊猫系列:
A 1
B 2
C 3
AB 4
AC 5
BA 4
BC 8
CA 5
CB 8
转换为矩阵的简单代码:
1 4 5
4 2 8
5 8 3
一些相当动态和内置的东西,而不是很多循环来解决这个3x3问题。
答案 0 :(得分:2)
你可以这样做。
import pandas as pd
# your raw data
raw_index = 'A B C AB AC BA BC CA CB'.split()
values = [1, 2, 3, 4, 5, 4, 8, 5, 8]
# reformat index
index = [(a[0], a[-1]) for a in raw_index]
multi_index = pd.MultiIndex.from_tuples(index)
df = pd.DataFrame(values, columns=['values'], index=multi_index)
df.unstack()
df.unstack()
Out[47]:
values
A B C
A 1 4 5
B 4 2 8
C 5 8 3
答案 1 :(得分:0)
对于pd.DataFrame 使用.values
成员或.to_records(...)
方法
对于pd.Series 使用.unstack()
方法作为Jianxun Li说
import numpy as np
import pandas as pd
d = pd.DataFrame(data = {
'var':['A','B','C','AB','AC','BA','BC','CA','CB'],
'val':[1,2,3,4,5,4,8,5,8] })
# Here are some options for converting to np.matrix ...
np.matrix( d.to_records(index=False) )
# matrix([[(1, 'A'), (2, 'B'), (3, 'C'), (4, 'AB'), (5, 'AC'), (4, 'BA'),
# (8, 'BC'), (5, 'CA'), (8, 'CB')]],
# dtype=[('val', '<i8'), ('var', 'O')])
# Here you can add code to rearrange it, e.g.
[(val, idx[0], idx[-1]) for val,idx in d.to_records(index=False) ]
# [(1, 'A', 'A'), (2, 'B', 'B'), (3, 'C', 'C'), (4, 'A', 'B'), (5, 'A', 'C'), (4, 'B', 'A'), (8, 'B', 'C'), (5, 'C', 'A'), (8, 'C', 'B')]
# and if you need numeric row- and col-indices:
[ (val, 'ABCDEF...'.index(idx[0]), 'ABCDEF...'.index(idx[-1]) ) for val,idx in d.to_records(index=False) ]
# [(1, 0, 0), (2, 1, 1), (3, 2, 2), (4, 0, 1), (5, 0, 2), (4, 1, 0), (8, 1, 2), (5, 2, 0), (8, 2, 1)]
# you can sort by them:
sorted([ (val, 'ABCDEF...'.index(idx[0]), 'ABCDEF...'.index(idx[-1]) ) for val,idx in d.to_records(index=False) ], key=lambda x: x[1:2] )