我有一个熊猫时间序列ts
,可以按照以下说明重新创建
random.seed(111)
rng = pd.date_range(start='2010-01-11', periods=10, freq='W')
ts = pd.Series(np.random.uniform(-10, 10, size=len(rng)), rng).cumsum()
我得到的结果是这样的:
Index Value
'2018-10-30 00:00:00' 5
'2018-11-30 00:00:00' 9
'2018-12-30 00:00:00' 7
...
如何将ts
的索引转换为毫秒?
Index Value
1540843200000 5
1543521600000 9
1546113600000 7
...
答案 0 :(得分:1)
将日期时间转换为原始格式-通过转换为ns
然后由np.int64
除以10**6
,最后分配回来:
print (ts)
2010-01-17 9.536558
2010-01-24 7.171763
2010-01-31 7.687922
2010-02-07 5.193187
2010-02-14 -2.815826
2010-02-21 -4.252529
2010-02-28 -7.060655
2010-03-07 -8.430221
2010-03-14 -8.711684
2010-03-21 -15.011056
Freq: W-SUN, dtype: float64
ts.index = ts.index.astype(np.int64) // 10**6
print (ts)
1263686400000 7.747194
1264291200000 14.755361
1264896000000 8.644319
1265500800000 18.253922
1266105600000 13.046097
1266710400000 9.091535
1267315200000 14.309464
1267920000000 15.630323
1268524800000 7.286377
1269129600000 1.859216
dtype: float64