我是信号处理的新手。在这里,我想问一下如何从python中获得FFT的FFT系数。这是我的代码示例:
from scipy.fftpack import fft
# Number of samplepoints
N = 600
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
yf = fft(y)
xf = np.linspace(0.0, 1.0/(2.0*T), N/2)
import matplotlib.pyplot as plt
plt.plot(xf, 2.0/N * np.abs(yf[0:N/2]))
plt.grid()
plt.show()
答案 0 :(得分:0)
嗯我也不知道信号处理,但也许这有效:
from scipy.signal import argrelmax
f = xf[scipy.signal.argrelmax(yf[0:N/2])]
Af = np.abs(yf[argrelmax(yf[0:N/2])])
答案 1 :(得分:0)
引用@hotpaw,在this类似的答案:
“实数和虚数阵列放在一起时,可以表示一个复杂的数组。频域中复数阵列的每个复杂元素都可以被认为是一个频率系数,并且具有一个幅度sqrt(R R +我 I))”。
因此,系数是fft函数返回的数组中的复杂元素。此外,重要的是要使用FFT功能的区间大小(数量)。测试一堆值并选择一个对您的应用程序更有意义的值是有意义的。通常,它与样本数量的大小相同。这是大多数给出的答案所假设的,并产生了很好的合理结果。如果有人想探索它,这是我的代码版本:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import scipy.fftpack
fig = plt.figure(figsize=[14,4])
N = 600 # Number of samplepoints
Fs = 800.0
T = 1.0 / Fs # N_samps*T (#samples x sample period) is the sample spacing.
N_fft = 80 # Number of bins (chooses granularity)
x = np.linspace(0, N*T, N) # the interval
y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x) # the signal
# removing the mean of the signal
mean_removed = np.ones_like(y)*np.mean(y)
y = y - mean_removed
# Compute the fft.
yf = scipy.fftpack.fft(y,n=N_fft)
xf = np.arange(0,Fs,Fs/N_fft)
##### Plot the fft #####
ax = plt.subplot(121)
pt, = ax.plot(xf,np.abs(yf), lw=2.0, c='b')
p = plt.Rectangle((Fs/2, 0), Fs/2, ax.get_ylim()[1], facecolor="grey", fill=True, alpha=0.75, hatch="/", zorder=3)
ax.add_patch(p)
ax.set_xlim((ax.get_xlim()[0],Fs))
ax.set_title('FFT', fontsize= 16, fontweight="bold")
ax.set_ylabel('FFT magnitude (power)')
ax.set_xlabel('Frequency (Hz)')
plt.legend((p,), ('mirrowed',))
ax.grid()
##### Close up on the graph of fft#######
# This is the same histogram above, but truncated at the max frequence + an offset.
offset = 1 # just to help the visualization. Nothing important.
ax2 = fig.add_subplot(122)
ax2.plot(xf,np.abs(yf), lw=2.0, c='b')
ax2.set_xticks(xf)
ax2.set_xlim(-1,int(Fs/6)+offset)
ax2.set_title('FFT close-up', fontsize= 16, fontweight="bold")
ax2.set_ylabel('FFT magnitude (power) - log')
ax2.set_xlabel('Frequency (Hz)')
ax2.hold(True)
ax2.grid()
plt.yscale('log')