在lm

时间:2015-06-12 16:29:17

标签: python lmfit

我想从这3个函数中找到参数E_utau_maxG

功能如下:

  

功能1:   0 = 0.009000900090009 * E_u *(0.000103939092728486 * exp(1500000.0 / tau_max)+ 0.000157703794137242 * exp(2999000.0 / tau_max)+ 0.00017784012 * exp(4500000.0 / tau_max)+ 0.00025534696 * exp(6000000.0 / tau_max)+ 0.00027086158 * exp(7500000.0 / tau_max )+ 0.000280826592271819 * exp(9000000.0 / tau_max)+ 0.0004132622 * exp(10501000.0 / tau_max))* exp(-10501000.0 / tau_max)+ 1000000.0 * G *(0.000467438377626028 * exp(2999000.0 / tau_max)+ 0.00117770839577636 * exp(4500000.0 / tau_max )+ 0.00197826966391473 * exp(6000000.0 / tau_max)+ 0.00312798328672298 * exp(7500000.0 / tau_max)+ 0.00434787369844519 * exp(9000000.0 / tau_max)+ 0.00561383708066149 * exp(10501000.0 / tau_max))* exp(-10501000.0 / tau_max)/ tau_max

     

功能2:   1.13624775718 = 0.09000900090009 * E_u *(0.000103939092728486 * exp(15000.0 / tau_max)+ 0.000157703794137242 * exp(29990.0 / tau_max)+ 0.00017784012 * exp(45000.0 / tau_max)+ 0.00025534696 * exp(60000.0 / tau_max)+ 0.00027086158 * exp(75000.0 / tau_max )+ 0.000280826592271819 * exp(90000.0 / tau_max)+ 0.0004132622 * exp(105010.0 / tau_max))* exp(-105010.0 / tau_max)+ 10000.0 * G *(0.000467438377626028 * exp(29990.0 / tau_max)+ 0.00117770839577636 * exp(45000.0 / tau_max) )+ 0.00197826966391473 * exp(60000.0 / tau_max)+ 0.00312798328672298 * exp(75000.0 / tau_max)+ 0.00434787369844519 * exp(90000.0 / tau_max)+ 0.00561383708066149 * exp(105010.0 / tau_max))* exp(-105010.0 / tau_max)/ tau_max

     

功能3:   1.13106678093 = 0.9000900090009 * E_u *(0.000103939092728486 * exp(150.0 / tau_max)+ 0.000157703794137242 * exp(299.9 / tau_max)+ 0.00017784012 * exp(450.0 / tau_max)+ 0.00025534696 * exp(600.0 / tau_max)+ 0.00027086158 * exp(750.0 / tau_max )+ 0.000280826592271819 * exp(900.0 / tau_max)+ 0.0004132622 * exp(1050.1 / tau_max))* exp(-1050.1 / tau_max)+ 100.0 * G *(0.000467438377626028 * exp(299.9 / tau_max)+ 0.00117770839577636 * exp(450.0 / tau_max )+ 0.00197826966391473 * exp(600.0 / tau_max)+ 0.00312798328672298 * exp(750.0 / tau_max)+ 0.00434787369844519 * exp(900.0 / tau_max)+ 0.00561383708066149 * exp(1050.1 / tau_max))* exp(-1050.1 / tau_max)/ tau_max

1 个答案:

答案 0 :(得分:0)

在一组超越方程中有3个非线性方程和3个未知数。没有封闭形式的解决方案,但您可以获得参数的数值。我知道这是在python部分,但你应该看看Mathematica。这里有一个很好的例子:https://mathematica.stackexchange.com/questions/9875/numerically-solving-two-dependent-transcendental-equations