我想使用Eigen库将[vec,val] = eig(A)
从MATLAB翻译成c ++,但我无法达到相同的结果!
我尝试了eigensolver
,ComplexEigenSolver
和SelfAdjointEigenSolver.
他们都没有在MATLAB中给我eig(A)
这样的结果。
Sample matrices:
Tv(:,:,223) =
0.8648 -1.9658 -0.2785
-1.9658 4.9142 0.8646
-0.2785 0.8646 0.3447
Tv(:,:,224) =
1.9735 -0.4218 1.0790
-0.4218 3.3012 0.1855
1.0790 0.1855 3.7751
Tv(:,:,225) =
2.4948 1.0185 1.1633
1.0185 1.1732 -0.4479
1.1633 -0.4479 4.3289
Tv(:,:,226) =
0.3321 0.0317 0.1617
0.0317 0.0020 -0.0139
0.1617 -0.0139 0.5834
征:
MatrixXcd vec(3 * n, 3);
VectorXcd val(3);
for (int k = 0; k < n; k++){
EigenSolver<Matrix3d> eig(Tv.block<3, 3>(3 * k, 0));
vec.block<3, 3>(3 * k, 0) = eig.eigenvectors();
cout <<endl << vec.block<3, 3>(3 * k, 0) << endl;
val = eig.eigenvalues();
cout << "val= " << endl << val << endl;
}
//结果
(0.369152,0) (-0.830627,0) (-0.416876,0)
(-0.915125,0) (-0.403106,0) (-0.00717218,0)
(-0.162088,0) (0.384142,0) (-0.908935,0)
val=
(5.86031,0)
(0.0396418,0)
(0.223765,0)
(0.881678,0) (0.204005,0) (0.425472,0)
(0.23084,0) (-0.97292,0) (-0.011858,0)
(-0.411531,0) (-0.108671,0) (0.904894,0)
val=
(1.35945,0)
(3.41031,0)
(4.27996,0)
(0.526896,0) (-0.726801,0) (0.440613,0)
(-0.813164,0) (-0.581899,0) (0.0125466,0)
(-0.247274,0) (0.364902,0) (0.897609,0)
val=
(0.377083,0)
(2.72623,0)
(4.89367,0)
(0.88992,0) (-0.43968,0) (0.121341,0)
(0.13406,0) (-0.00214387,0) (-0.990971,0)
(-0.43597,0) (-0.898152,0) (-0.0570358,0)
val=
(0.257629,0)
(0.662467,0)
(-0.00267575,0)
MATLAB:
for k=1:n
[u,d] = eig(Tv(:,:,k))
end
%结果
u =
0.8306 -0.4169 -0.3692
0.4031 -0.0072 0.9151
-0.3841 -0.9089 0.1621
d =
0.0396 0 0
0 0.2238 0
0 0 5.8603
u =
0.8817 0.2040 0.4255
0.2308 -0.9729 -0.0119
-0.4115 -0.1087 0.9049
d =
1.3594 0 0
0 3.4103 0
0 0 4.2800
u =
-0.5269 0.7268 0.4406
0.8132 0.5819 0.0125
0.2473 -0.3649 0.8976
d =
0.3771 0 0
0 2.7262 0
0 0 4.8937
u =
-0.1213 -0.8899 0.4397
0.9910 -0.1341 0.0021
0.0570 0.4360 0.8982
d =
-0.0027 0 0
0 0.2576 0
0 0 0.6625
你的建议是什么?
答案 0 :(得分:3)
我没有得到你的问题,因为看着你的结果他们都会返回相同的结果。回想一下矩阵的特征分解并不是完全唯一的:
由于您的矩阵是对称的,您应该使用SelfAdjointEigenSolver将它们自动排序为MatLab。那么特征向量只会与它们的符号不同,但你必须忍受它。
答案 1 :(得分:1)
嗯......结果是一样的......
结果特征:
(0.369152,0) (-0.830627,0) (-0.416876,0)
(-0.915125,0) (-0.403106,0) (-0.00717218,0)
(-0.162088,0) (0.384142,0) (-0.908935,0)
val=
(5.86031,0)
(0.0396418,0)
(0.223765,0)
结果matlab:
u =
0.8306 -0.4169 -0.3692
0.4031 -0.0072 0.9151
-0.3841 -0.9089 0.1621
d =
0.0396 0 0
0 0.2238 0
0 0 5.8603
我有个好消息......
载体是相同的,但无序.....
来自eigen的eigV1是来自Matlab的-eigV3,
来自eigen的eigV2是来自Matlab的-eigV1,
来自eigen的eigV3是来自Matlab的-eigV2,
特征值被重新排序......