我们需要计算持续重新平衡的2只股票组合。让我们称他们为A和B.他们都应该有相同的投资组合部分。因此,如果我在我的投资组合中有100美元,则50美元投资A和50美元投资。由于两只股票的表现差异很大,他们不会保持相同的权重(3个月后A已经可能值70美元而B降至45 $)。问题是他们必须将他们在投资组合中的份额保持在一定的容忍带宽内。此带宽为5%。所以我需要一个功能:如果A> B * 1.05或A * 1.05
第一部分只是为了获得最快的方式,使一些数据具有共同的讨论基础并使结果具有可比性,因此您只需复制并粘贴整个代码即可。它适用于您。
import pandas as pd
from datetime import datetime
import numpy as np
df1 = pd.io.data.get_data_yahoo("IBM",
start=datetime(1970, 1, 1),
end=datetime.today())
df1.rename(columns={'Adj Close': 'ibm'}, inplace=True)
df2 = pd.io.data.get_data_yahoo("F",
start=datetime(1970, 1, 1),
end=datetime.today())
df2.rename(columns={'Adj Close': 'ford'}, inplace=True)
df = df1.join(df2.ford, how='inner')
del df["Open"]
del df["High"]
del df["Low"]
del df["Close"]
del df["Volume"]
现在开始用公式计算每只股票的相对表现:df.ibm / df.ibm [0]。问题是,一旦我们打破第一个带宽,我们需要在公式中重置0:df.ibm / df.ibm [0],因为我们重新平衡并需要从该点开始计算。因此,我们将df.d用于此占位符函数,并在带宽被破坏时将其设置为等于df.t df.t基本上只计算数据帧的长度,因此可以告诉我们“我们在哪里”。所以这里开始实际计算:
tol = 0.05 #settintg the bandwidth tolerance
df["d"]= 0 #
df["t"]= np.arange(len(df))
tol = 0.3
def flex_relative(x):
if df.ibm/df.ibm.iloc[df.d].values < df.ford/df.ford.iloc[df.d].values * (1+tol):
return df.iloc[df.index.get_loc(x.name) - 1]['d'] == df.t
elif df.ibm/df.ibm.iloc[df.d].values > df.ford/df.ford.iloc[df.d].values * (1+tol):
return df.iloc[df.index.get_loc(x.name) - 1]['d'] == df.t
else:
return df.ibm/df.ibm.iloc[df.d].values, df.ford/df.ford.iloc[df.d].values
df["ibm_performance"], df["ford_performance"], = df.apply(flex_relative, axis =1)
问题是,我从最后一行代码中得到此错误,我尝试将该函数应用于df.apply(flex_relative, axis =1)
ValueError: ('The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().', u'occurred at index 1972-06-01 00:00:00')
问题是错误陈述的给定选项都没有解决我的问题,所以我真的不知道该怎么做......
到目前为止我唯一发现的是下面的链接,但是调用R函数对我来说不起作用,因为我需要将它应用于相当大的数据集,我也可以在这个函数中实现优化,所以它肯定需要在python中构建。无论如何,这是链接:Finance Lib with portfolio optimization method in python
手动(什么不是处理大数据的好方法),我计算出重新平衡的第一个日期是:03.11.1972 00:00:00
第一次重新平衡时数据框的输出应如下所示:
ibm ford d t ibm_performance ford_performance
1972-11-01 00:00:00 6,505655 0,387415 0 107 1,021009107 0,959552418
1972-11-02 00:00:00 6,530709 0,398136 0 108 1,017092172 0,933713605
1972-11-03 00:00:00 6,478513 0,411718 0 109 1,025286667 0,902911702 # this is the day, the rebalancing was detected
1972-11-06 00:00:00 6,363683 0,416007 109 110 1,043787536 0,893602752 # this is the day the day the rebalancing is implemented, therefore df.d gets set = df.t = 109
1972-11-08 00:00:00 6,310883 0,413861 109 111 1,052520384 0,898236364
1972-11-09 00:00:00 6,227073 0,422439 109 112 1,066686226 0,879996875
非常感谢您的支持!
@Alexander:是的,重新平衡将在第二天进行。
@maxymoo:如果您在此之后实施此代码,您将获得每只股票的投资组合权重,并且它们不会在45%到55%之间休息。它相当于75%到25%之间:
df["ford_weight"] = df.ford_prop*df.ford/(df.ford_prop*df.ford+df.ibm_prop*df.ibm) #calculating the actual portfolio weights
df["ibm_weight"] = df.ibm_prop*df.ibm/(df.ford_prop*df.ford+df.ibm_prop*df.ibm)
print df
print df.ibm_weight.min()
print df.ibm_weight.max()
print df.ford_weight.min()
print df.ford_weight.max()
我试了一个小时左右才修好,但没有找到它。
我能做些什么来使这个问题更清楚吗?
答案 0 :(得分:7)
这里的主要思想是以美元而不是比率来工作。如果你 跟踪ibm和的股票数量和相对美元价值 福特股票,那么你可以表达重新平衡的标准
mask = (df['ratio'] >= 1+tol) | (df['ratio'] <= 1-tol)
其中比率等于
df['ratio'] = df['ibm value'] / df['ford value']
和df['ibm value']
以及df['ford value']
代表实际的美元价值。
import datetime as DT
import numpy as np
import pandas as pd
import pandas.io.data as PID
def setup_df():
df1 = PID.get_data_yahoo("IBM",
start=DT.datetime(1970, 1, 1),
end=DT.datetime.today())
df1.rename(columns={'Adj Close': 'ibm'}, inplace=True)
df2 = PID.get_data_yahoo("F",
start=DT.datetime(1970, 1, 1),
end=DT.datetime.today())
df2.rename(columns={'Adj Close': 'ford'}, inplace=True)
df = df1.join(df2.ford, how='inner')
df = df[['ibm', 'ford']]
df['sh ibm'] = 0
df['sh ford'] = 0
df['ibm value'] = 0
df['ford value'] = 0
df['ratio'] = 0
return df
def invest(df, i, amount):
"""
Invest amount dollars evenly between ibm and ford
starting at ordinal index i.
This modifies df.
"""
c = dict([(col, j) for j, col in enumerate(df.columns)])
halfvalue = amount/2
df.iloc[i:, c['sh ibm']] = halfvalue / df.iloc[i, c['ibm']]
df.iloc[i:, c['sh ford']] = halfvalue / df.iloc[i, c['ford']]
df.iloc[i:, c['ibm value']] = (
df.iloc[i:, c['ibm']] * df.iloc[i:, c['sh ibm']])
df.iloc[i:, c['ford value']] = (
df.iloc[i:, c['ford']] * df.iloc[i:, c['sh ford']])
df.iloc[i:, c['ratio']] = (
df.iloc[i:, c['ibm value']] / df.iloc[i:, c['ford value']])
def rebalance(df, tol, i=0):
"""
Rebalance df whenever the ratio falls outside the tolerance range.
This modifies df.
"""
c = dict([(col, j) for j, col in enumerate(df.columns)])
while True:
mask = (df['ratio'] >= 1+tol) | (df['ratio'] <= 1-tol)
# ignore prior locations where the ratio falls outside tol range
mask[:i] = False
try:
# Move i one index past the first index where mask is True
# Note that this means the ratio at i will remain outside tol range
i = np.where(mask)[0][0] + 1
except IndexError:
break
amount = (df.iloc[i, c['ibm value']] + df.iloc[i, c['ford value']])
invest(df, i, amount)
return df
df = setup_df()
tol = 0.05
invest(df, i=0, amount=100)
rebalance(df, tol)
df['portfolio value'] = df['ibm value'] + df['ford value']
df['ibm weight'] = df['ibm value'] / df['portfolio value']
df['ford weight'] = df['ford value'] / df['portfolio value']
print df['ibm weight'].min()
print df['ibm weight'].max()
print df['ford weight'].min()
print df['ford weight'].max()
# This shows the rows which trigger rebalancing
mask = (df['ratio'] >= 1+tol) | (df['ratio'] <= 1-tol)
print(df.loc[mask])
答案 1 :(得分:3)
您可以使用此代码在每个时间点计算您的投资组合。
i = df.index[0]
df['ibm_prop'] = 0.5/df.ibm.ix[i]
df['ford_prop'] = 0.5/df.ford.ix[i]
while i:
try:
i = df[abs(1-(df.ibm_prop*df.ibm + df.ford_prop*df.ford)) > tol].index[0]
except IndexError:
break
df['ibm_prop'].ix[i:] = 0.5/df.ibm.ix[i]
df['ford_prop'].ix[i:] = 0.5/df.ford.ix[i]
答案 2 :(得分:2)
只是对maxymoo答案的数学改进:
i = df.index[0]
df['ibm_prop'] = df.ibm.ix[i]/(df.ibm.ix[i]+df.ford.ix[i])
df['ford_prop'] = df.ford.ix[i]/(df.ibm.ix[i]+df.ford.ix[i])
while i:
try:
i = df[abs((df.ibm_prop*df.ibm - df.ford_prop*df.ford)) > tol].index[0]
except IndexError:
break
df['ibm_prop'].ix[i:] = df.ibm.ix[i]/(df.ibm.ix[i]+df.ford.ix[i])
df['ford_prop'].ix[i:] = df.ford.ix[i]/(df.ibm.ix[i]+df.ford.ix[i])
答案 3 :(得分:2)
这个怎么样:
df["d"]= [0,0,0,0,0,0,0,0,0,0]
df["t"]= np.arange(len(df))
tol = 0.05
def flex_relative(x):
if df.ibm/df.ibm.iloc[df.d].values < df.ford/df.ford.iloc[df.d].values * (1+tol):
return df.iloc[df.index.get_loc(x.name) - 1]['d'] == df.t
elif df.ibm/df.ibm.iloc[df.d].values > df.ford/df.ford.iloc[df.d].values * (1+tol):
return df.iloc[df.index.get_loc(x.name) - 1]['d'] == df.t