我尝试了用户在Stackoverflow上提供的解决方案:henry-gomersall重复加速基于FFT的卷积,但获得了不同的结果。
import numpy as np
import pyfftw
import scipy.signal
import timeit
class CustomFFTConvolution(object):
def __init__(self, A, B, threads=1):
shape = (np.array(A.shape) + np.array(B.shape))-1
if np.iscomplexobj(A) and np.iscomplexobj(B):
self.fft_A_obj = pyfftw.builders.fftn(
A, s=shape, threads=threads)
self.fft_B_obj = pyfftw.builders.fftn(
B, s=shape, threads=threads)
self.ifft_obj = pyfftw.builders.ifftn(
self.fft_A_obj.get_output_array(), s=shape,
threads=threads)
else:
self.fft_A_obj = pyfftw.builders.rfftn(
A, s=shape, threads=threads)
self.fft_B_obj = pyfftw.builders.rfftn(
B, s=shape, threads=threads)
self.ifft_obj = pyfftw.builders.irfftn(
self.fft_A_obj.get_output_array(), s=shape,
threads=threads)
def __call__(self, A, B):
fft_padded_A = self.fft_A_obj(A)
fft_padded_B = self.fft_B_obj(B)
return self.ifft_obj(fft_padded_A * fft_padded_B)
N = 200
A = np.random.rand(N, N, N)
B = np.random.rand(N, N, N)
start_time = timeit.default_timer()
C = scipy.signal.fftconvolve(A,B,"same")
print timeit.default_timer() - start_time
custom_fft_conv_nthreads = CustomFFTConvolution(A, B, threads=1)
C = custom_fft_conv_nthreads(A, B)
print timeit.default_timer() - start_time
PyFFTW约。比SciPy FFT慢7倍,这与其他用户体验不同。这段代码有什么问题? Python 2.7.9,PyFFTW 0.9.2。
答案 0 :(得分:1)
你没有做你认为自己正在做的事情,而你认为你做的事情也不应该做到。
您没有做您认为自己正在做的事情,因为上面的代码只定义start_time
一次(因此您对pyfftw的测试不仅包括耗时创建CustomFFTConvolution
对象,还有scipy卷积!)。
你不应该做你认为自己正在做的事,因为你应该使用timeit
来测试这类事情。
因此,使用某个文件foo.py
:
import numpy as np
import pyfftw
import scipy.signal
class CustomFFTConvolution(object):
def __init__(self, A, B, threads=1):
shape = (np.array(A.shape) + np.array(B.shape))-1
if np.iscomplexobj(A) and np.iscomplexobj(B):
self.fft_A_obj = pyfftw.builders.fftn(
A, s=shape, threads=threads)
self.fft_B_obj = pyfftw.builders.fftn(
B, s=shape, threads=threads)
self.ifft_obj = pyfftw.builders.ifftn(
self.fft_A_obj.get_output_array(), s=shape,
threads=threads)
else:
self.fft_A_obj = pyfftw.builders.rfftn(
A, s=shape, threads=threads)
self.fft_B_obj = pyfftw.builders.rfftn(
B, s=shape, threads=threads)
self.ifft_obj = pyfftw.builders.irfftn(
self.fft_A_obj.get_output_array(), s=shape,
threads=threads)
def __call__(self, A, B):
fft_padded_A = self.fft_A_obj(A)
fft_padded_B = self.fft_B_obj(B)
return self.ifft_obj(fft_padded_A * fft_padded_B)
N = 200
A = np.random.rand(N, N, N)
B = np.random.rand(N, N, N)
在ipython中,您可以获得以下内容:
In [1]: %run foo.py
In [2]: timeit scipy.signal.fftconvolve(A,B,"same")
1 loops, best of 3: 8.38 s per loop
In [3]: custom_fft_conv_nthreads = CustomFFTConvolution(A, B, threads=1)
In [4]: timeit custom_fft_conv_nthreads(A, B)
1 loops, best of 3: 6.9 s per loop
并且有多个线程:
In [5]: custom_fft_conv_nthreads = CustomFFTConvolution(A, B, threads=4)
In [6]: timeit custom_fft_conv_nthreads(A, B)
1 loops, best of 3: 3.81 s per loop
如果您通过在start_time = timeit.default_timer()
之前插入C = custom_fft_conv_nthreads(A, B)
来更正代码以执行您认为正在执行的操作,则可以获得更接近预期的内容:
10.8795630932
8.31241607666