我遇到了问题,非常感谢您的帮助。
我必须生成一个具有2 ^ N个节点的DAG,其值为0到2 ^(N-1),具有以下属性:
如果x 这是一个简单的输出: 节点是节点指针的向量,节点a是保存节点值和两个向量的类,一个节点指向当前节点的邻居,另一个节点指向当前节点的节点是邻居。上面的代码是用C ++编写的。
我为任何语法错误道歉。英语不是我的母语。#include <iostream>
#include <vector>
#include <math.h>
typedef unsigned int unint;
using namespace std;
class Node
{
friend class DAG;
private:
unint value;
vector<Node* > neighbourTo;
vector<Node* > neighbors;
public:
Node(unint );
};
Node::Node(unint _value)
: value(_value) {}
class DAG
{
private:
int noNodes;
vector<Node* > nodes;
public:
DAG(int );
void initializeNodes(int ,int );
int isPowerOf2(unsigned int );
int getMaxNaighbourTo(int );
int getMinNeighbor(int );
int numberOfPathsLengthK(int );
int recursion(Node& , int );
void print();
};
DAG::DAG(int size)
{
noNodes = size;
nodes.resize(noNodes);
int i, j;
initializeNodes(0, noNodes-1);
for(i = 0; i < noNodes-1; i++)
{
for(j = i+1; j < noNodes; j++)
{
if(isPowerOf2(i ^ j))
{
nodes[i]->neighbors.push_back(nodes[j]);
nodes[j]->neighbourTo.push_back(nodes[i]);
}
}
}
}
void DAG::initializeNodes(int min, int max)
{
if(max == min)
nodes[max] = new Node(max);
else
{
int s = (max + min)/2;
initializeNodes(min, s);
initializeNodes(s+1, max);
}
}
int DAG::isPowerOf2(unsigned int value)
{
return ((value != 0) && !(value & (value - 1)));
}
int DAG::getMaxNaighbourTo(int index)
{
if(index > 0 && index <= (noNodes-1))
{
int size = nodes[index]->neighbourTo.size();
return nodes[index]->neighbourTo[size-1]->value;
}
return -1;
}
int DAG::getMinNeighbor(int index)
{
if(index >= 0 && index < (noNodes-1))
return nodes[index]->neighbors[0]->value;
return -1;
}
int DAG::numberOfPathsLengthK(int K)
{
if(K <= 0)
return 0;
long int paths = 0;
for(int i = 0; i < nodes.size(); i++)
{
paths += recursion(*nodes[i], K - 1);
}
return (paths % 100003);
}
int DAG::recursion(Node& node, int K)
{
if( K <= 0 )
return node.neighbors.size();
else
{
long int paths = 0;
for(int i = 0; i < node.neighbors.size(); i++)
{
paths += recursion(*node.neighbors[i], K - 1);
}
return paths;
}
}
void DAG::print()
{
for(int i = 0; i < nodes.size(); i++)
{
cout << "Node: " << nodes[i]->value << "\tNeighbors: ";
for(int j = 0; j < nodes[i]->neighbors.size(); j++)
{
cout << nodes[i]->neighbors[j]->value << " ";
}
cout << endl;
}
}
int main()
{
int
N, M, K,
i, j;
cin >> N >> M >> K;
DAG graf(pow(2, N));
graf.print();
cout << "==1==" << endl;
cout << graf.getMaxNaighbourTo(M) << endl;
cout << "==2==" << endl;
cout << graf.getMinNeighbor(M) << endl;
cout << "==3==" << endl;
cout << graf.numberOfPathsLengthK(K) << endl;
return 0;
}
4 3 2
Node: 0 Neighbors: 1 2 4 8
Node: 1 Neighbors: 3 5 9
Node: 2 Neighbors: 3 6 10
Node: 3 Neighbors: 7 11
Node: 4 Neighbors: 5 6 12
Node: 5 Neighbors: 7 13
Node: 6 Neighbors: 7 14
Node: 7 Neighbors: 15
Node: 8 Neighbors: 9 10 12
Node: 9 Neighbors: 11 13
Node: 10 Neighbors: 11 14
Node: 11 Neighbors: 15
Node: 12 Neighbors: 13 14
Node: 13 Neighbors: 15
Node: 14 Neighbors: 15
Node: 15 Neighbors:
2
7
48
答案 0 :(得分:2)
第一个明显的非算法性能增益是不来构建图形,如果您只需要打印邻居就可以这样做,而无需创建数据结构。这里的第二个改进是避免用每个输出线冲洗流......
对于算法改进,给定一个数字N=0011010
(例如,任何数字有效),您需要确定哪个数字满足这两个要求,N xor M
是2的幂,并且N > M
。第一个要求意味着两个数字在一位中完全不同,第二个要求意味着该位必须在M
中点亮而在N
中不亮,所以答案只看上面的位是:M = { 1011010, 0111010, 0011110, 0011011 }
。现在,您可以通过扫描N
中的每个位来获取所有这些内容,如果它是0
,则设置它并打印该值。
// assert that 'bits < CHAR_BITS * sizeof(unsigned)'
const unsigned int max = 1u << bits;
for (unsigned int n = 1; n < max; ++n) {
std::cout << "Node: " << n << " Neighbors: ";
for (unsigned int bit = 0; i < bits; ++i) {
unsigned int mask = 1 << bit;
if (!(n & mask)) {
std::cout << (n | mask);
}
}
std::cout << '\n';
}
对于给定节点的最小和最大邻居,您可以应用相同的推理,给定数量N的最大可达邻居将是M,使得N中的最高0位被点亮。对于最小可达邻居,您需要M使得最低0位设置为1.
答案 1 :(得分:0)
我有空闲时间写草图,看看:
<form action="" method="post" class="horizontal-form" role="form" >
<input type="hidden" name="submit_form" value="true" />
<input type="text" name="field_name" class="form-control" value="" >
<button type="submit" class="btn"><i class="icon-ok"></i> Send</button>
</form>
对于struct node
{
std::vector<std::shared_ptr<node> > link;
};
int main()
{
int N = 4;
int M = 1<<N;
std::vector<std::shared_ptr<node> > tree(M, std::make_shared<node>());
for(int i=0;i<M;++i)
{
std::cout<<"node: "<<i<<" is connected to:\n";
for(int p=0;p<N;++p)
{
int j= (1<<p) ^ i; //this is the evaluation you asked for
//it's the inverse of i ^ j = 2^p
if(j<=i) continue;
tree[i]->link.push_back(tree[j]);
std::cout<<j<<" ";
}
std::cout<<std::endl;
}
}
,即N=4
个节点,程序打印
2^4=16
我希望这就是你要找的东西。玩得开心。