我对z3py很新。 我试图在z3py中编写以下2个表达式
和
可以找到有关此问题的更多信息 here
我经常搜索stackoverflow并遇到了 similar question
但遗憾的是,我无法得到满意的答案。
我尝试用以下方式编写SMT中的第一个编码:
#InputGroup, BlockGroup, OutputGroup contain some integer values to represent blocks
InputGroup = [0,1,2]
BlockGroup = [2,3,4,5,6]
OutputGroup = [7,8,9]
Groups = [InputGroup, BlockGroup, OutputGroup]
NumberOfTasks = len(InputGroup)+ len(BlockGroup)+ len(OutputGroup)
M = Function('M', Intsort(), Intsort())
Task = Function('Task', Intsort(), Intsort(), Intsort())
summation1 = Int('summation1')
# each group from the Groups is represented by its index number
for r, g in enumerate(Groups):
for m in range(0, NumberOfTasks):
if(m in g):
s.add(summation1 == summation1+ M(Task(r,m)))
和SMT中的第二个表达式如下:
NumberOfInputs = len(InputGroup)
NumberOfBlocks = len(BlockGroup)
NumberOfOutputs = len(OutputGroup)
Node = Function('Node', Intsort(), Intsort(), Intsort())
f = Function('f', Intsort(), Intsort(), Intsort())
for r, g in enumerate(Groups):
if(r != Groups.index(InputGroup) and r != Groups.index(OutputGroup)):
for i in range(0,(NumberOfInputs+NumberOfBlocks+NumberOfOutputs)):
summation2 = Int('summation2')
for m in range(0, (NumberOfTasks)):
if(m in g and i in g):
s.add(summation2 == summation2+ f(Node(r,i), Task(r,m)))
s.add(summation2 == 1)
虽然我从上面的方程式得到满意的结果,但我得到的模型有点值得怀疑。 我只是想知道我是否正确表达了这一点。
答案 0 :(得分:1)
我想你想改变:
# each group from the Groups is represented by its index number
for r, g in enumerate(Groups):
for m in range(0, NumberOfTasks):
if(m in g):
s.add(summation1 == summation1+ M(Task(r,m)))
这样的事情:
# each group from the Groups is represented by its index number
sumTerms = [M(Task(r,m))
for r, g in enumerate(Groups):
for m in range(0, NumberOfTasks):
if(m in g)]
s.add(summation1 == Sum(sumTerms))
和第二个例子类似。