我正在努力(并尝试学习)理解在OpenCV中使用Lucas-Kanade光流功能的概念,以找到“跟踪的好点”的定向运动。我被告知我需要从cv2.calcOpticalFlowPyrLK()
函数计算向量的方向。
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
namedWindow('OptFlow', cv2.CV_WINDOW_AUTOSIZE)
# params for corner detection
feature_params = dict( maxCorners = 100,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
# LK params
lk_params = dict( winSize = (15,15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
10, 0.03))
# Create some random colors
color = np.random.randint(0,255,(100,3))
# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
while(1):
ret,frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# calculate optical flow
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# Select good points
good_new = p1[st==1]
good_old = p0[st==1]
cv2.imshow('OptFlow',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# update prev frame with new
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()
代码来自我一直关注的教程,因为我对编程和Python都很陌生。如何找到方向运动,这样我可以输出(-1)向左移动,(0)不移动,(1)从光流计算向右移动?
由于