我有一个角色向量
var1 <- c("pine tree", "dense forest", "red fruits", "green fruits",
"clean water", "pine")
和一个清单
var2 <- list(c("tall tree", "fruits", "star"), c("tree tall", "pine tree",
"tree pine", "black forest", "water"), c("apple", "orange", "grapes"))
我想将var1中的单词与var2中的元素进行匹配,并获得var2的排名元素。例如,这里所需的输出是:
"tree tall" "pine tree" "tree pine" "black forest" "water"
var2 [2]是等级1(var1中的4个短语:松树,茂密的森林,松树和水与var2匹配[2]
"tall tree" "fruits" "star"
var2 [1]是等级2,(var1中的3个短语:松树,红色水果和绿色水果与var2匹配[1])
"apple" "orange" "grapes"
var2 [3]是排名3,与var1
不匹配我试过
indx1 <- sapply(var2, function(x) sum(grepl(var1, x)))
没有获得所需的输出。
如何解决?一个代码片段将不胜感激。 感谢。
编辑:
新数据如下:
var11 <- c("nature" , "environmental", "ringing", "valley" , "status" , "climate" ,
"forge" , "environmental" , "common" ,
"birdwatch", "big" , "link" ,
"day" , "pintail" , "morning" ,
"big garden" , "birdwatch deadline", "deadline february" ,
"mu condition" , "garden birdwatch" , "status" ,
"chorus walk" , "dawn choru" , "walk sunday",
"climate lobby" , "lobby parliament" , "u status" ,
"sandwell valley" , "my status of" , "environmental lake")
var22 <- list(c("environmental condition"), c("condition", "status"), c("water", "ocean water"))
答案 0 :(得分:1)
我们可以循环'var2'(sapply(var2,
),将字符串分隔为空格(strsplit(x, ' ')
),grep
输出列表元素作为'var1'的模式。检查是否有any
匹配,sum
逻辑向量和rank
。这可以用于重新排序'var2'元素。
indx <- rank(-sapply(var2, function(x) sum(sapply(strsplit(x, ' '),
function(y) any(grepl(paste(y,collapse='|'), var1))))),
ties.method='first')
indx
#[1] 2 1 3
var2[indx]
#[[1]]
#[1] "tree tall" "pine tree" "tree pine" "black forest" "water"
#[[2]]
#[1] "tall tree" "fruits" "star"
#[[3]]
#[1] "apple" "orange" "grapes"
如果我们还需要计算重复项,请尝试
indx <- rank(-sapply(var22, function(x) sum(sapply(strsplit(x, ' '),
function(y) sum(sapply(strsplit(var11, ' '),
function(z) any(grepl(paste(y, collapse="|"), z))))))),
ties.method='random')
indx
#[1] 1 2
如果我们需要过滤掉'var2'中与'var1'没有任何匹配的元素
pat <- paste(unique(unlist(strsplit(var1, ' '))), collapse="|")
Filter(function(x) any(grepl(pat, x)), var2[indx])
#[[1]]
#[1] "tree tall" "pine tree" "tree pine" "black forest" "water"
#[[2]]
#[1] "tall tree" "fruits" "star"
答案 1 :(得分:0)
以下代码可以运作:
idx <- rank(-sapply(var2,
function(x) sum(unlist(sapply(strsplit(var1,split=' '),
function(y) any(unlist(sapply(y,
function(z) grepl(z,x))>0))>0)))),
ties.method='random')