我试图在Python中提出一种贪婪算法,它在给定某个起始顶点的情况下返回无向图中的顶点。我知道DFS确定是否存在循环,但我试图实际返回形成循环的顶点。我使用邻接矩阵来表示以下图表:
adjacencyMatrix = [[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
图示这是一个由单个周期组成的无向图。
我当前的思维过程是将我的起始索引设置为我遇到的第一个1
(在这种情况下为adjacencyMatrix[0][1]
)。然后我会查看行的其余部分,看看是否有另一个1
,因为这意味着我当前的顶点连接到该索引。但是,我不完全确定(a)这是正确的方法,(b)如何“移动”到下一个顶点。例如,如何导航嵌套的for
循环以从adjacencyMatrix[0][1]
顶点移动到adjacencyMatrix[0][2]
顶点?我只是交换行和列索引吗?
修改 我想出的这个解决方案似乎适用于我试过的几张图:
def findCycle(matrix):
visited = list()
cycleNotFound = True
row = 0
col = 0
startVertex = (0, 0)
while cycleNotFound:
# Only add a vertex if it has not already been visited
if (matrix[row][col] == 1) and ((row, col) not in visited):
# Set the startVertex when the first node is found
if len(visited) == 0:
startVertex = (row, col)
# Add the current vertex and its counter part
visited.append((row, col))
visited.append((col, row))
# If row and col are equal, infite loop will get created
if row != col:
row = col
col = 0
else:
row += 1
# If back at starting point, break look
elif ((row, col) == startVertex) and (len(visited) > 1):
cycleNotFound = False
visited.append(startVertex)
# Else, continue to look for unvisted neighbors
else:
col += 1
return visited
if __name__ == "__main__":
matrix = [[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]]
cycle = findCycle(matrix)
index = 0
# Print the vertices. Only print even vertices to avoid duplicates.
while (index < len(cycle)):
print cycle[index]
index += 2
它不是最优雅的解决方案,我确信需要进行一些重大的重构。
答案 0 :(得分:2)
你可以试试这个:
def findCycle(node):
cycle = stack()
if( DFS(node, cycle) ):
return cycle
return None
def DFS(node, cycle):
cycle.append(node)
mark node as visited
foreach node.neighbors as neighbor:
if neighbor already visited:
return true
else:
if( DFS(neighbor, cycle) ) return true
cycle.remove(node)
return false