我有以下布尔值来简化
(A'C'D')+(A'B'D')+(A'BC')+(A'BD)
我得到的最远的是,
A'C'(D'+B)+A'
,这是一个因素
A' from A'B'D'+A'BD
。还有什么可以做的吗?我一直在尝试不同的东西,我不能再简化它了。
答案 0 :(得分:1)
实际上你应该能够简化原始表达
¬a·¬c·¬d + ¬a·¬b·¬d + ¬a·b·¬c + ¬a·b·d
以下任何一种最小形式:
¬a·(b + ¬d)·(¬b + ¬c + d)
¬a·¬b·¬d + ¬a·b·¬c + ¬a·b·d
它旁边的给定表达式是卡诺图中的最小DNF和最小CNF(使用乳胶生成):
您也可以通过应用布尔代数定律来检查它:
¬a·¬c·¬d + ¬a·¬b·¬d + ¬a·b·¬c + ¬a·b·d
¬a·¬b·¬d + ¬a·¬c·¬d + ¬a·b·¬c + ¬a·b·d //just permuting
¬a·¬b·¬d + ¬a·¬c·(¬d + b) + ¬a·b·d //distributivity
¬a·¬b·¬d + ¬a·¬c·(¬b·¬d + b) + ¬a·b·d //distributivity
¬a·¬b·¬d + ¬a·¬c·¬b·¬d + ¬a·¬c·b + ¬a·b·d //distributivity
¬a·¬b·¬d + ¬a·¬c·b + ¬a·b·d //absorption
¬a·¬b·¬d + ¬a·b·¬c + ¬a·b·d //minimal DNF
¬a·¬b·¬d + ¬a·b·d + ¬a·b·¬c //just permuting
¬a·(¬b·¬d + b·d + b·¬c) //distributivity
¬a·((¬b + b)·(¬b + d)·(¬d + b)·(¬d + d) + b·¬c) //distributivity
¬a·( (1)·(¬b + d)·(¬d + b)·(1) + b·¬c) //complementation
¬a·( (¬b + d)·(¬d + b) + b·¬c) //identity for ·
¬a·( (¬b + d + b·¬c)·(¬d + b + b·¬c)) //distributivity
¬a·( (¬b + d + ¬c)·(¬d + b + b·¬c)) //distributivity
¬a·( (¬b + d + ¬c)·(¬d + b)) //absorption
¬a·(¬b + ¬c + d)·(b + ¬d) //minimal CNF