使用四元数旋转轴周围的矢量

时间:2015-04-21 17:33:16

标签: c++ vector rotation quaternions

我正在尝试学习3D编程,现在我正在尝试了解如何使用四元数来围绕轴旋转矢量。

据我所知,为了将矢量v绕轴a旋转,在将两个矢量转换为四元数之后,我们将v乘以a,然后将乘积乘以a的共轭。

我想围绕(1,0,0)旋转v(0,1,0)90度,我应该得到一个结果向量v(0,0,1)(或0,0, - 1,取决于旋转方向。)

我没有得到我期待的输出。 这是代码:

    int main()
    {
        //I want to rotate this vector about the x axis by PI/2 radians:
        Quaternion v(0, 1, 0, 0);
        v.normalize();


        float angle = PI / 2.0f;
        float cos = math::cos(angle / 2.0f);
        float sin = math::sin(angle / 2.0f);

        Quaternion q(1.0f*sin, 0.0f*sin, 0.0f*sin, cos);

        std::cout << "q not normalized = " <<"\t"<< q.x << " " << q.y << " "      << q.z << " " << q.w << std::endl;

        q.normalize();

        std::cout << "q normalized = " <<"\t\t"<< q.x << " " << q.y << " " << q.z << " " << q.w << std::endl;
        std::cout << std::endl;

        Quaternion r;


       //I multiply the vector v by the quaternion v, then I multiply by the    conjugate.
        r = q * v;
        //do I need to normalize here?
        r = r * q.conjugate();
        //and here?


        //shouldn't the resulting vector be 0,0,1? 

        std::cout << "r not normalized = " << "\t" << r.x << " " << r.y << " " << r.z << " " << r.w << std::endl;
        r.normalize();

        std::cout << "r normalized = " << "\t\t" << r.x << " " << r.y << " " << r.z << " " << r.w << std::endl;
        std::cout << std::endl;

        system("pause");
        return 0;
    }

这是输出:

q未标准化,与q标准化相同: x = 0.707107,y = 0,z = 0,w = 0.707107

未正常化: x = 0.707107,y = 0,z = 1,w = -2.12132 r标准化: x = 0.288675,y = 0,z = 0.408248,w = -0.866025

我做错了什么? 我是否从这个过程中了解了什么?

1 个答案:

答案 0 :(得分:-1)

基本上沿着x轴(1,0,0)以90度角旋转矢量,使用下面的方法,这适用于Euler和四元数

| 1    0           0 |   | 0 |     | 0 |
| 0   cos90   -sin90 | * | 1 |  =  | 0 |
| 0   sin90    cos90 |   | 0 |     | 1 |

了解旋转矩阵http://en.wikipedia.org/wiki/Rotation_matrix